流固耦合的多层搅拌反应器振动特性研究

胡效东,王灏,王世飞,张景坡,曾庆良

振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 133-137.

PDF(1262 KB)
PDF(1262 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 133-137.
论文

流固耦合的多层搅拌反应器振动特性研究

  • 胡效东,王灏,王世飞,张景坡,曾庆良
作者信息 +

Analysis of the Multiple-impeller in fluid-structure interaction and vibration characteristics

  • HU Xiaodong,WANG Hao,ZHANG Jingpo,ZENG Qingliang
Author information +
文章历史 +

摘要

针对某型号搅拌反应器搅拌主轴因振动断裂的问题,基于流固耦合理论,采用CFD和FEM相结合的单向耦合稳态的数值模拟以及经验公式计算方法。在考虑流场作用的条件下分析多种方法得出搅拌器的临界转速结果。分析主轴断裂的原因及影响搅拌器的固有频率的流体因素,并对主轴结构进行改进。得出结论:主轴驱动电机转速大于主轴的最低设计转速是主轴产生振动断裂的主要原因;搅拌介质的流体力和阻尼作用对搅拌器的固有频率均有影响;可以将主轴适当加粗以提高其临界转速,从而远离共振范围并有效解决振动问题;采用流固耦合的方法能够考虑搅拌器转动、流体载荷和搅拌桨叶的影响。其计算结果比经验公式更接近实际情况。

Abstract

For a chemical machinery company of a certain type of mixing reactor stirring spindle due to vibration fault, based on the theory of fluid solid coupling by one-way coupled homeostasis combination of CFD and FEM numerical simulation and empirical formula calculation method. In the condition of considering the effect of the flow field, the critical speed of the mixer was analyzed. The causes of the spindle fracture and the effect of the fluid factors to the frequency mixer was analyzed while the structure of the spindle was improved. Conclusions are as follows: The spindle drive motor speed was greater than the minimum design spindle speed is the main reason for the vibration generated by the main shaft fracture; The effect of fluid force and damping on the natural frequency of the mixer is obvious; Enlargement of diameter could increase the critical speed, which was far away from the resonance range and solved the problem of vibration effectively; The method of fluid solid coupling could be used to consider the influence of the rotation form the agitator, the load of the fluid and the mixing blades. It is more close to the actual situation than the empirical formula.
 

关键词

搅拌反应器 / 流固耦合 / 临界转速 / CFD

Key words

Stirred reactor / fluid solid coupling / critical speed / CFD

引用本文

导出引用
胡效东,王灏,王世飞,张景坡,曾庆良. 流固耦合的多层搅拌反应器振动特性研究[J]. 振动与冲击, 2017, 36(14): 133-137
HU Xiaodong,WANG Hao,ZHANG Jingpo,ZENG Qingliang. Analysis of the Multiple-impeller in fluid-structure interaction and vibration characteristics[J]. Journal of Vibration and Shock, 2017, 36(14): 133-137

参考文献

[1]徐斌. 混流式水轮机转轮流固耦合的动力特性分析[D]. 西安, 西安理工大学,2006.
XU Bin.Dynamic. Characteristic study on fluid-structure interaction for francis turbine runner[D]Xi′an:Xi′an University of Technology, 2006.
[2]高红斌, 卢改林, 高琨, 程晨. 单级悬臂泵轴的动态分析与改进设计[J]. 流体机械, 2011, 07:45-49.
GAO Hongbin,LU Gailin,GAO Kun,GHEN Chen. Dynamic analysis and improved design of single-stage cantitlever pump shaft[J].Fluid Machinery,2011,07:45-49.
[3]刘厚林,徐欢, 吴贤芳, 王凯, 谈明高. 基于流固耦合的导叶式离心泵强度分析[J]. 振动与冲击, 2013, 12:27-30.
LIU Houlin,XU Huan,WU Xianfang,WANG Kai,TAN Minggao. Stength analysis of a diffuser pump based on fluid-structure interaction[J].Journal of vibration and Shock,2013,12:27-30.
[4]荆丰梅, 肖钢,熊志民. 潮流能水轮机单向流固耦合计算方法[J]. 振动与冲击, 2013, 08:91-95+104.
JING Fengmei,XIAO Gang,XIONG Zhimin. Calculation method of fluid and structure interaction in a vertical-axis ticlal current turbine[J]Journal of vibration and Shock,2013,08:91-95+104.
[5]黄文俊, 朱晓农, 于洋, 饶杰等. 离心风机转子临界转速计算方法的对比分析[J]. 流体机械, 2014, 10:37-40.
HUANG Wenjun,ZHU Xiannong,YU Yang,RAO Jie,CHEN Sheng,CHANG Chao. Comparative analysis of calculation method for critical rotating speed of centrifugal fan rotor[J].Fluid Machinery,2014,10:37-40.
[6]潘旭, 李成, 铁瑛, 张万枝. 轴流泵叶片流固耦合强度分析[J]. 水力发电学报, 2012, 04:221-226+237.
PAN Xu,LI Cheng,TIE Ying,ZHANG Wanzhi. Strengh analysis of fluid-solid coupling of axial flow pump blades[J]Journal of hydroelectric engineering,2012,04:221-226+237.
[7]刘厚林, 徐欢, 王凯, 吴贤芳, 杜辉. 基于流固耦合的余热排出泵转子模态分析[J]. 流体机械, 2012, 06:28-32.
LIU Houlin,XU Huan,WAN GKai,WU Xianfang,DU Hui. Modal Analysis for Rotor of Residual Heat Removal Pump based on Fluid-structure Interaction[J]. FLUID MACHINERY, 2012, 06:28-32.
[8]刘建瑞, 陈斌, 张金凤, 骆寅, 汤富俊. 余热排出泵水中模态分析[J]. 排灌机械工程学报, 2015, 04:290-295.
Liu Jianrui,Chen Bin, Zhang Jinfeng,et al. Mode analysis for rotor of residual heat removal pump in water[J]. Journal of Drainage and Irrigation Machinery Engineering,2015,33(4):290 -295.
[9]施卫东, 郭艳磊, 张德胜, 孟凡有, 蒋文军. 大型潜水轴流泵转子部件湿模态数值模拟[J]. 农业工程学报, 2013, 24:72-78+366.
Shi Weidong, Guo Yanlei, Zhang Desheng, et al. Numerical simulation on modal of large submersible axial-flow pump rotor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(24): 72-78.
[10]朱利, 杨昌明, 郑军, 李文全. 基于流固耦合的轴流泵叶轮结构分析[J]. 流体机械, 2013, 03:20-23+40.
ZHU Li,ZHANG Changming,ZHENG Jun,LI. Wenquan.  Structure analysis of axial flow pump impeller based on fluid-solid coupling[J]Fluid Machinery,2013,03:20-23+40.
[11]袁寿其, 徐宇平, 张金凤, 裴吉, 周建佳. 流固耦合作用对螺旋离心泵流场影响的数值分析[J]. 农业机械学报, 2013, 01:38-42+47.
YUAN Shouqi,XU Yuping,ZHANG Jinfeng,PEI Ji,ZHOU Jianjia. Numerical analysis for effect of fluid-structure interaction on flow field in screw centrifugal pump[J]Transactions of the Chinese society for agricultural machinery,2013,01:38-42+47.
[12]陈志平, 章序文, 林兴华等著. 搅拌与混合设备设计选用手册[M]. 北京, 化学工业出版社, 2004:4.
Chen Zhiping, Zhang Xuwen, Lin Xinghua.Stirring and mixing equipment design manual[M].Beijing. Chemical Industry Press,2004.4.
[13]张钰.水介质中的转子动力学建模及模态分析研究[D]. 华中科技大学,2013.
ZHANG Yu. Dynamics modeling and modal analysis for the rotor in water medium[D].Huazhong University of Science and Technology,2013.

PDF(1262 KB)

Accesses

Citation

Detail

段落导航
相关文章

/