[1] Olabi, A., R. Béarée, O. Gibaru, M. Damak, Feedrate planning for machining with industrial six-axis robots[J]. Control Engineering Practice, 2010. 18(5): p. 471-482.
[2] DePree, J., C. Gesswein, Robotic machining white paper project-Halcyon Development. 2008.
[3] Odf, R., G. Burley, S. Naing, J. Corbett, Error budgeting for assembly-centric design of aerostructures[J]. American Institute of Aeronautics and Astronautics, 2001. 9(5): p. 33-43.
[4] Pan, Z., H. Zhang, Z. Zhu, J. Wang, Chatter analysis of robotic machining process[J]. Journal of Materials Processing Technology, 2006. 173(3): p. 301-309.
[5] World Robotics 2015 Industrial Robots, http://www.ifr.org/industrial-robots/statistics/[J].
[6] Chen, Y., F. Dong, Robot machining: recent development and future research issues[J]. International Journal of Advanced Manufacturing Technology, 2013. 66(9-12): p. 1489-1497.
[7] Atkinson, J., J. Hartmann, S. Jones, P. Gleeson. Robotic drilling system for 737 aileron[C]. in SAE 2007 AeroTech Congress & Exhibition, Los Angeles, CA, USA. SAE Technical Papers. 2007. p. 01-3821.
[8] DeVlieg, R., E. Feikert, One-up assembly with robots[J]. Training, 2008. 2013: p. 09-30.
[9] 曲巍崴, 董辉跃, 柯映林, 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011. 32(10): p. 1951-1960.
Qu W.W., Dong H.Y., Ke Y.L., Pose Accuracy Compensation Technology in Robot-aided Aircraft Assembly Drilling Process[J], Acta Aeronautica et Astronautica Sinica. 2011. 32(10): p. 1951-1960.
[10] Bi, S., J. Liang, Robotic drilling system for titanium structures[J]. The International Journal of Advanced Manufacturing Technology, 2011. 54(5-8): p. 767-774.
[11] 公茂震, 袁培江, 王田苗, 张睿, 航空制孔机器人末端垂直度智能调节方法[J]. 北京航空航天大学学报, 2012. 38(10): p. 1400-1404.
Gong M.Z., Yuan P.J., Wang T.M., Zhang R., Intelligent verticality-adjustment method of end-effector in aeronautical drilling robot[J], Journal of Beijing University of Aeronautics and Astronautics. 2012. 38(10): p. 1400-1404.
[12] Zhao, X., Y. Pan, F. Gao. Force-Position Hybrid Control of a New Parallel Hexapod Robot for Drilling Holes on Fuselage Surface[C]. in ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2013. American Society of Mechanical Engineers. p. 63-73.
[13] 王增翠, 秦现生, 白晶, 王文龙. 飞机壁板自动制孔法向测量算法研究[J]. 机械设计与制造, 2014(6): p. 160-163.
Wang Z.C., Qin X.S., Bai J., Wang W.L., Research on Normal Measurement Algorithm in Auto-Drilling of Aircraft Panel[J], Machinery Design & Manufacture, 2014(6): p. 160-163.
[14] 王继虎, 刘长毅, 田威, 万世明, 刘勇, 李东明, 机器人制孔工艺参数优化有限元仿真分析[J]. 南京航空航天大学学报, 2012. 44(B04): p. 69-72.
Wang, J.H., Liu C.Y., Tian W., Wan S.M, Liu Y., Li D.M., Finite Element Analysis of Robot Drilling Parameters Optimization[J], Journal of Nanjing University of Aeronautics & Astronautics, 2012. 44(B04): p. 69-72.
[15] Devlieg, R., High-Accuracy Robotic Drilling/Milling of 737 Inboard Flaps[J]. SAE Int. J. Aerosp., 2011. 4(2): p. 1373-1379.
[16] Surdilovic, D., H. Zhao, G. Schreck, J. Krüger. Advanced methods for small batch robotic machining of hard materials[C]. in Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on. 2012. VDE. p. 1-6.
[17] Kihlman, H., I. Eriksson, M. Ennis, Robotic orbital drilling of structures for aerospace applications. 2002, SAE Technical Paper.
[18] Eguti, C.C.A., L.G. Trabasso, Design of a robotic orbital driller for assembling aircraft structures[J]. Mechatronics, 2014. 24(5): p. 533-545.
[19] 谢祥南, 螺旋铣制孔设备孔径自动控制系统设计研究. 2014, 浙江大学.
Xie, X.N, Hole-Diameter Dynamic Control System Research and Design of Helical Milling Device[M], 2014, Zhejiang University.
[20] 单以才, 何宁, 李亮, 机器人化螺旋铣孔运动的矢量建模与仿真[J]. 计算机集成制造系统, 2014. 20(3): p. 612-617.
Shan Y.C., He N., Li L., Vector Modeling and Simulation of Robotic Orbital Drilling Motion[J], Computer Integrated Manufacturing Systems. 2014. 20(3): p. 612-617.
[21] Rafieian, F., B. Hazel, Z. Liu, Regenerative Instability of Impact-cutting Material Removal in the Grinding Process Performed by a Flexible Robot Arm ☆[J]. Procedia Cirp, 2014. 14: p. 406-411.
[22] Wang, W., C. Yun, A Path Planning Method for Robotic Belt Surface Grinding[J]. Chinese Journal of Aeronautics, 2011. 24(4): p. 520-526.
[23] 张绍全, 工业机器人镗孔加工系统设计研究. 2013, 浙江大学.
Zhang S.Q., Design and Research of Industrial Robot Boring Machining System[M], 2013, Zhejiang University.
[24] 曲巍崴, 侯鹏辉, 杨根军, 黄官平, 尹富成, 石鑫, 机器人加工系统刚度性能优化研究[J]. 航空学报, 2013. 34(12): p. 2823-2832.
Qu W.W., Hou P.H., Yang G.J., Huang G.P., Yin F.C., Shi X., Reseach on the Stiffness Performance for Robot Machining System[J], Acta Aeronautica et Astronautica Sinica. 2013. 34(12): p. 2823-2832.
[25] Qihui, S., W. Yang, Y. Quan, Z. Yonggang, Application of Siemens 840D on Refitting of Inner-milling Machine [J][J]. Manufacturing Technology & Machine Tool, 2005. 3: p. 038.
[26] Pashkevich, A., A. Klimchik, D. Chablat, Enhanced stiffness modeling of manipulators with passive joints[J]. Mechanism and machine theory, 2011. 46(5): p. 662-679.
[27] Alici, G., B. Shirinzadeh, Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators[J]. Robotics IEEE Transactions on, 2005. 21(4): p. 554-564.
[28] Zhang, X., W. Yang, X. Cheng, Y.S. Chen. Stiffness Identification for Serial Robot Manipulator Based on Uncertainty Approach[C]. in Intelligent Robotics and Applications - International Conference, Icira 2011, Aachen, Germany, December 6-8, 2011, Proceedings. 2011. p. 378-388.
[29] Dumas, C., S. Caro, S. Garnier, B. Furet, Joint stiffness identification of six-revolute industrial serial robots[J]. Robotics and Computer-Integrated Manufacturing, 2011. 27(4): p. 881-888.
[30] 朱健, 钻铆机械手钻孔过程的刚度分析. 2013, 南京航空航天大学.
Zhu, J. Stiffness Analysis of Drilling and Riveting Robot during Drilling[M], 2013, Nanjing University of Aeronautics and Astronautics.
[31] Lopes, A.M., Complete dynamic modelling of a moving base 6-dof parallel manipulator[J]. Robotica, 2010. 28(5): p. 781-793.
[32] Mohan, A., S.P. Singh, S.K. Saha, A cohesive modeling technique for theoretical and experimental estimation of damping in serial robots with rigid and flexible links[J]. Multibody System Dynamics, 2010. 23(4): p. 333-360.
[33] Qin, Z., L. Baron, L. Birglen, A new approach to the dynamic parameter identification of robotic manipulators[J]. Robotica, 2010. 28(4): p. 539-547.
[34] 静大海, 刘晓平, 机器人关节面时变物理参数在线识别的谐波传播法[J]. 机械工程学报, 2009. 45(3): p. 296-301.
Jing D.H., Liu X.P, On-line Identification of Time-varying Physical Parameters of Robot Joint Based on Harmonic Propagation[J], Journal of Mechnical Engineering, 2009. 45(3): p. 296-301.
[35] Abele, E., M. Weigold, S. Rothenbcher, Modeling and identification of an industrial robot for machining applications[J]. CIRP Annals-Manufacturing Technology, 2007. 56(1): p. 387-390.
[36] 方强, 李超, 费少华, 孟涛, 机器人镗孔加工系统稳定性分析[J]. 航空学报, 2016. 37(2). p. 727-737.
Fang Q., Li C., Fei, S.H., Meng T., .Stability Analysis of Robot Boring System[J], Acta Aeronautica et Astronautica Sinica. 2016. 37(2) : p. 727-737.
[37] Özer, A., S. Eren Semercigil, R. Prasanth Kumar, P. Yowat, Delaying tool chatter in turning with a two-link robotic arm[J]. Journal of Sound and Vibration, 2013. 332(6): p. 1405-1417.
[38] Mejri, S., V. Gagnol, T.P. Le, L. Sabourin, P. Ray, P. Paultre, Dynamic characterization of machining robot and stability analysis[J]. International Journal of Machine Tools & Manufacture, 2016. 82(1-4): p. 351-359.
[39] Pan, Z., H. Zhang. Analysis and suppression of chatter in robotic machining process[C]. in Control, Automation and Systems, 2007. ICCAS'07. International Conference on. 2007. IEEE. p. 595-600.
[40] Hazel, B., F. Rafieian, Z. Liu. Impact-Cutting and Regenerative Chatter in Robotic Grinding[C]. in ASME 2011 International Mechanical Engineering Congress and Exposition. 2011. American Society of Mechanical Engineers. p. 349-359.
[41] Guo, Y., H. Dong, G. Wang, Y. Ke, Vibration analysis and suppression in robotic boring process[J]. International Journal of Machine Tools & Manufacture, 2015. 101: p. 102-110.
[42] Bhungalia, A.A., D.E. Veley. Design of smart structures using bounded piezoelectrics[C]. in AIAA, NASA, and ISSMO, 6th Symposium on Multidisciplinary Analysis and Optimization. 1996. Bellevue, WA; UNITED STATES. p. 866-872.
[43] Narayanan, S., V. Balamurugan, Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators[J]. Journal of Sound and Vibration, 2003. 262: p. 529-562.
[44] Han, J.H., K.H. Rew, I. Lee, An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor[J]. Smart materials and structures, 1997. 6: p. 549.
[45] Prakah-Asante, K.O., K.C. Craig, The application of multi-channel design methods for vibration control of an active structure[J]. Smart materials and structures, 1994. 3: p. 329-343.
[46] Sebastijanovic, N., Ma, T. W., and Yang, H. T. Y., Panel Flutter Detection and Control Using Eigenvector Orientation and Piezoelectric Layers[J]. AIAA Journal, 2006. 45(1): p. 118-127.
[47] Zhang, S., H. Li, R. Schmidt, P. Müller, Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures[J]. Journal of Sound and Vibration, 2014. 333(5): p. 1209-1223.
[48] 王民, 费仁元, 切削系统可变刚度结构及其颤振控制方法的研究[J]. 机械工程学报, 2009(z1): p. 219-222.
Wang M., Fei R.Y., Reseach of Variable-stiffness Structure and Varying Stiffness Method of Chatter Control[J]. Journal of Mechnical Engineering, 2009(z1): p. 219-222.
[49] Silva, M.M.D., G.S. Venter, P.S. Varoto, R.T. Coelho, Experimental results on chatter reduction in turning through embedded piezoelectric material and passive shunt circuits[J]. Mechatronics, 2015. 29: p. 78-85.
[50] Davis, J.H., R.M. Hirschorn, Tracking control of a flexible robot link[J]. IEEE Transactions on Automatic Control, 1988. 33(3): p. 238-248.
[51] Tso, S.K., T.W. Yang, W.L. Xu, Z.Q. Sun, Vibration control for a flexible-link robot arm with deflection feedback[J]. International Journal of Non-Linear Mechanics, 2003. 38(1): p. 51-62.
[52] Shigang, Y., Weak-vibration configurations for flexible robot manipulators with kinematic redundancy[J]. Mechanism and machine theory, 2000. 35(2): p. 165-178.
[53] Chalhoub, N.G., F. Gordaninejad, Q. Lin, A. Ghazavi, Dynamic modeling of a laminated composite-material flexible robot arm made of short beams[J]. The International journal of robotics research, 1991. 10(5): p. 560-569.
[54] Tzou, H.S., G.C. Wan, Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and distributed viscoelastic actuator[J]. Computers & Structures, 1990. 35(6): p. 669-677.
[55] Dadfarnia, M., N. Jalili, B. Xian, D.M. Dawson. Lyapunov-based piezoelectric control of flexible cartesian robot manipulators[C]. in American Control Conference, 2003. Proceedings of the 2003. 2003. IEEE. p. 5227-5232.
[56] 娄军强, 魏燕定, 杨依领, 谢锋然, 赵晓伟, 智能柔性机械臂的建模和振动主动控制研究[J]. 机器人, 2014(5): p. 552-559.
Lou J.Q., Wei Y.D., Yang Y.l., Xie F.R, Zhao X.W., Modeling and Active Vibration Control of an Intelligent Flexible Manipulator System[J]. Robot, 2014(5): p. 552-559.
[57] 曹青松, 周继惠, 黎林, 叶兰, 基于模糊自整定PID算法的压电柔性机械臂振动控制研究[J]. 振动与冲击, 2010. 29(12): p. 181-186.
Cao Q.S., Zhou J.H., Li L., Ye L., Vibration control of piezoelectric flexible manipulator based on fuzzy self-tuning PID algorithm[J], Journal of Vibaration and Shock, 2010. 29(12): p. 181-186.
[58] Baz, A., K. Imam, J. McCoy, Active vibration control of flexible beams using shape memory actuators[J]. Journal of Sound and Vibration, 1990. 140(3): p. 437-456.
[59] Gandhi, M.V., B.S. Thompson, S.B. Choi, S. Shakir, Electro-Rheological-Fluid-Based Articulating Robotic Systems[J]. Journal of Mechanical Design, 1989. 111(3): p. 328-336.
[60] 戴金桥, 王爱民, 宋爱国, 基于磁流变液的柔性机器人振动控制阻尼器[J]. 机器人, 2010. 32(3): p. 358-362.
Dai J.Q., Wang A.M., Song A.G., A Magneto-rheological Fluid Based Damper for Vibration Control of Flexible Robot[J]. Robot, 2010. 32(3): p. 358-362.