机器人加工系统及其切削颤振问题研究进展

王战玺,张晓宇,李飞飞,张顺琦,秦现生

振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 147-155.

PDF(1227 KB)
PDF(1227 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 147-155.
论文

机器人加工系统及其切削颤振问题研究进展

  • 王战玺,张晓宇,李飞飞,张顺琦,秦现生
作者信息 +

A Review of Robot Machining System and Cutting Chatter Behavior

  • WANG Zhan-Xi, Zhang Xiao-Yu, Li Fei-Fei, Zhang Shun-qi, QIN Xian-Sheng
Author information +
文章历史 +

摘要

采用工业机器人加工系统来实现航空、航天等领域的装配现场加工,是非常有效的技术途径。由于机器人加工系统的整体刚度过低,在实际加工过程中较易自激产生颤振现象,造成加工失效甚至断刀现象,是当前机器人加工系统应用研究需要解决的技术难题。本文通过对国内外先进机器人加工系统的研究综述,重点分析机器人加工系统的主要特点及切削颤振问题,以机器人加工系统的刚度模型和动力学模型为理论基础,以期进一步揭示机器人加工系统切削颤振机理,为提高机器人加工系统的加工精度和动静态性能而设计出更适合的切削颤振主动抑制技术,并对有待进一步解决的问题以及未来的研究方向进行了讨论与展望。

Abstract

Applying industrial robot machining system is a very efficient technical way for assembly process of aviation and spaceflight field. Because the rigidity of whole robot machining system is quite low, the chatter phenomenon will be stimulated by the periodic disturbance load in machining process, which may results in processing failure, even machining system fracture. Therefore, the chatter phenomenon is a difficult technical problem need to be solved in the robot machining technology. In this paper, the research of domestic and foreign advanced robot machining system is presented. Focuses on the analysis of robot machining system main characteristics and cutting chatter behavior, robot machining system cutting chatter mechanism is expected reveal based on robot machining system stiffness model and dynamic model as the theoretical basis. In order to improve the machining precision of the robot processing system and the static and dynamic performance, it is expected to design more suitable cutting chatter active suppression, and then the further solution of the problems and future research directions are discussed.

关键词

机器人加工系统 / 切削颤振 / 刚度模型 / 动力学模型 / 主动抑制

Key words

  / Robot machining system, Cutting chatter, Stiffness model, Dynamic model, Active suppression

引用本文

导出引用
王战玺,张晓宇,李飞飞,张顺琦,秦现生. 机器人加工系统及其切削颤振问题研究进展[J]. 振动与冲击, 2017, 36(14): 147-155
WANG Zhan-Xi, Zhang Xiao-Yu, Li Fei-Fei, Zhang Shun-qi, QIN Xian-Sheng. A Review of Robot Machining System and Cutting Chatter Behavior[J]. Journal of Vibration and Shock, 2017, 36(14): 147-155

参考文献

[1] Olabi, A., R. Béarée, O. Gibaru, M. Damak, Feedrate planning for machining with industrial six-axis robots[J]. Control Engineering Practice, 2010. 18(5): p. 471-482.
[2] DePree, J., C. Gesswein, Robotic machining white paper project-Halcyon Development. 2008.
[3] Odf, R., G. Burley, S. Naing, J. Corbett, Error budgeting for assembly-centric design of aerostructures[J]. American Institute of Aeronautics and Astronautics, 2001. 9(5): p. 33-43.
[4] Pan, Z., H. Zhang, Z. Zhu, J. Wang, Chatter analysis of robotic machining process[J]. Journal of Materials Processing Technology, 2006. 173(3): p. 301-309.
[5] World Robotics 2015 Industrial Robots, http://www.ifr.org/industrial-robots/statistics/[J].
[6] Chen, Y., F. Dong, Robot machining: recent development and future research issues[J]. International Journal of Advanced Manufacturing Technology, 2013. 66(9-12): p. 1489-1497.
[7] Atkinson, J., J. Hartmann, S. Jones, P. Gleeson. Robotic drilling system for 737 aileron[C]. in SAE 2007 AeroTech Congress & Exhibition, Los Angeles, CA, USA. SAE Technical Papers. 2007. p. 01-3821.
[8] DeVlieg, R., E. Feikert, One-up assembly with robots[J]. Training, 2008. 2013: p. 09-30.
[9] 曲巍崴, 董辉跃, 柯映林, 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011. 32(10): p. 1951-1960.
Qu W.W., Dong H.Y., Ke Y.L., Pose Accuracy Compensation Technology in Robot-aided Aircraft Assembly Drilling Process[J], Acta Aeronautica et Astronautica Sinica. 2011. 32(10): p. 1951-1960.
[10] Bi, S., J. Liang, Robotic drilling system for titanium structures[J]. The International Journal of Advanced Manufacturing Technology, 2011. 54(5-8): p. 767-774.
[11] 公茂震, 袁培江, 王田苗, 张睿, 航空制孔机器人末端垂直度智能调节方法[J]. 北京航空航天大学学报, 2012. 38(10): p. 1400-1404.
Gong M.Z., Yuan P.J., Wang T.M., Zhang R., Intelligent verticality-adjustment method of end-effector in aeronautical drilling robot[J], Journal of Beijing University of Aeronautics and Astronautics. 2012. 38(10): p. 1400-1404.
[12] Zhao, X., Y. Pan, F. Gao. Force-Position Hybrid Control of a New Parallel Hexapod Robot for Drilling Holes on Fuselage Surface[C]. in ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 2013. American Society of Mechanical Engineers. p. 63-73.
[13] 王增翠, 秦现生, 白晶, 王文龙. 飞机壁板自动制孔法向测量算法研究[J]. 机械设计与制造, 2014(6): p. 160-163.
Wang Z.C., Qin X.S., Bai J., Wang W.L., Research on Normal Measurement Algorithm in Auto-Drilling of Aircraft Panel[J], Machinery Design & Manufacture, 2014(6): p. 160-163.
[14] 王继虎, 刘长毅, 田威, 万世明, 刘勇, 李东明, 机器人制孔工艺参数优化有限元仿真分析[J]. 南京航空航天大学学报, 2012. 44(B04): p. 69-72.
Wang, J.H., Liu C.Y., Tian W., Wan S.M, Liu Y., Li D.M., Finite Element Analysis of Robot Drilling Parameters Optimization[J], Journal of Nanjing University of Aeronautics & Astronautics, 2012. 44(B04): p. 69-72.
[15] Devlieg, R., High-Accuracy Robotic Drilling/Milling of 737 Inboard Flaps[J]. SAE Int. J. Aerosp., 2011. 4(2): p. 1373-1379.
[16] Surdilovic, D., H. Zhao, G. Schreck, J. Krüger. Advanced methods for small batch robotic machining of hard materials[C]. in Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on. 2012. VDE. p. 1-6.
[17] Kihlman, H., I. Eriksson, M. Ennis, Robotic orbital drilling of structures for aerospace applications. 2002, SAE Technical Paper.
[18] Eguti, C.C.A., L.G. Trabasso, Design of a robotic orbital driller for assembling aircraft structures[J]. Mechatronics, 2014. 24(5): p. 533-545.
[19] 谢祥南, 螺旋铣制孔设备孔径自动控制系统设计研究. 2014, 浙江大学.
Xie, X.N, Hole-Diameter Dynamic Control System Research and Design of Helical Milling Device[M], 2014, Zhejiang University.
[20] 单以才, 何宁, 李亮, 机器人化螺旋铣孔运动的矢量建模与仿真[J]. 计算机集成制造系统, 2014. 20(3): p. 612-617.
Shan Y.C., He N., Li L., Vector Modeling and Simulation of Robotic Orbital Drilling Motion[J], Computer Integrated Manufacturing Systems. 2014. 20(3): p. 612-617.
[21] Rafieian, F., B. Hazel, Z. Liu, Regenerative Instability of Impact-cutting Material Removal in the Grinding Process Performed by a Flexible Robot Arm ☆[J]. Procedia Cirp, 2014. 14: p. 406-411.
[22] Wang, W., C. Yun, A Path Planning Method for Robotic Belt Surface Grinding[J]. Chinese Journal of Aeronautics, 2011. 24(4): p. 520-526.
[23] 张绍全, 工业机器人镗孔加工系统设计研究. 2013, 浙江大学.
Zhang S.Q., Design and Research of Industrial Robot Boring Machining System[M], 2013, Zhejiang University.
[24] 曲巍崴, 侯鹏辉, 杨根军, 黄官平, 尹富成, 石鑫, 机器人加工系统刚度性能优化研究[J]. 航空学报, 2013. 34(12): p. 2823-2832.
Qu W.W., Hou P.H., Yang G.J., Huang G.P., Yin F.C., Shi X., Reseach on the Stiffness Performance for Robot Machining System[J], Acta Aeronautica et Astronautica Sinica. 2013. 34(12): p. 2823-2832.
[25] Qihui, S., W. Yang, Y. Quan, Z. Yonggang, Application of Siemens 840D on Refitting of Inner-milling Machine [J][J]. Manufacturing Technology & Machine Tool, 2005. 3: p. 038.
[26] Pashkevich, A., A. Klimchik, D. Chablat, Enhanced stiffness modeling of manipulators with passive joints[J]. Mechanism and machine theory, 2011. 46(5): p. 662-679.
[27] Alici, G., B. Shirinzadeh, Enhanced Stiffness Modeling, Identification and Characterization for Robot Manipulators[J]. Robotics IEEE Transactions on, 2005. 21(4): p. 554-564.
[28] Zhang, X., W. Yang, X. Cheng, Y.S. Chen. Stiffness Identification for Serial Robot Manipulator Based on Uncertainty Approach[C]. in Intelligent Robotics and Applications - International Conference, Icira 2011, Aachen, Germany, December 6-8, 2011, Proceedings. 2011. p. 378-388.
[29] Dumas, C., S. Caro, S. Garnier, B. Furet, Joint stiffness identification of six-revolute industrial serial robots[J]. Robotics and Computer-Integrated Manufacturing, 2011. 27(4): p. 881-888.
[30] 朱健, 钻铆机械手钻孔过程的刚度分析. 2013, 南京航空航天大学.
Zhu, J. Stiffness Analysis of Drilling and Riveting Robot during Drilling[M], 2013, Nanjing University of Aeronautics and Astronautics.
[31] Lopes, A.M., Complete dynamic modelling of a moving base 6-dof parallel manipulator[J]. Robotica, 2010. 28(5): p. 781-793.
[32] Mohan, A., S.P. Singh, S.K. Saha, A cohesive modeling technique for theoretical and experimental estimation of damping in serial robots with rigid and flexible links[J]. Multibody System Dynamics, 2010. 23(4): p. 333-360.
[33] Qin, Z., L. Baron, L. Birglen, A new approach to the dynamic parameter identification of robotic manipulators[J]. Robotica, 2010. 28(4): p. 539-547.
[34] 静大海, 刘晓平, 机器人关节面时变物理参数在线识别的谐波传播法[J]. 机械工程学报, 2009. 45(3): p. 296-301.
Jing D.H., Liu X.P, On-line Identification of Time-varying Physical Parameters of Robot Joint Based on Harmonic Propagation[J], Journal of Mechnical Engineering, 2009. 45(3): p. 296-301.
[35] Abele, E., M. Weigold, S. Rothenbcher, Modeling and identification of an industrial robot for machining applications[J]. CIRP Annals-Manufacturing Technology, 2007. 56(1): p. 387-390.
[36] 方强, 李超, 费少华, 孟涛, 机器人镗孔加工系统稳定性分析[J]. 航空学报, 2016. 37(2). p. 727-737.
Fang Q., Li C., Fei, S.H., Meng T., .Stability Analysis of Robot Boring System[J], Acta Aeronautica et Astronautica Sinica. 2016. 37(2) : p. 727-737.
[37] Özer, A., S. Eren Semercigil, R. Prasanth Kumar, P. Yowat, Delaying tool chatter in turning with a two-link robotic arm[J]. Journal of Sound and Vibration, 2013. 332(6): p. 1405-1417.
[38] Mejri, S., V. Gagnol, T.P. Le, L. Sabourin, P. Ray, P. Paultre, Dynamic characterization of machining robot and stability analysis[J]. International Journal of Machine Tools & Manufacture, 2016. 82(1-4): p. 351-359.
[39] Pan, Z., H. Zhang. Analysis and suppression of chatter in robotic machining process[C]. in Control, Automation and Systems, 2007. ICCAS'07. International Conference on. 2007. IEEE. p. 595-600.
[40] Hazel, B., F. Rafieian, Z. Liu. Impact-Cutting and Regenerative Chatter in Robotic Grinding[C]. in ASME 2011 International Mechanical Engineering Congress and Exposition. 2011. American Society of Mechanical Engineers. p. 349-359.
[41] Guo, Y., H. Dong, G. Wang, Y. Ke, Vibration analysis and suppression in robotic boring process[J]. International Journal of Machine Tools & Manufacture, 2015. 101: p. 102-110.
[42] Bhungalia, A.A., D.E. Veley. Design of smart structures using bounded piezoelectrics[C]. in AIAA, NASA, and ISSMO, 6th Symposium on Multidisciplinary Analysis and Optimization. 1996. Bellevue, WA; UNITED STATES. p. 866-872.
[43] Narayanan, S., V. Balamurugan, Finite element modelling of piezolaminated smart structures for active vibration control with distributed sensors and actuators[J]. Journal of Sound and Vibration, 2003. 262: p. 529-562.
[44] Han, J.H., K.H. Rew, I. Lee, An experimental study of active vibration control of composite structures with a piezo-ceramic actuator and a piezo-film sensor[J]. Smart materials and structures, 1997. 6: p. 549.
[45] Prakah-Asante, K.O., K.C. Craig, The application of multi-channel design methods for vibration control of an active structure[J]. Smart materials and structures, 1994. 3: p. 329-343.
[46] Sebastijanovic, N., Ma, T. W., and Yang, H. T. Y., Panel Flutter Detection and Control Using Eigenvector Orientation and Piezoelectric Layers[J]. AIAA Journal, 2006. 45(1): p. 118-127.
[47] Zhang, S., H. Li, R. Schmidt, P. Müller, Disturbance rejection control for vibration suppression of piezoelectric laminated thin-walled structures[J]. Journal of Sound and Vibration, 2014. 333(5): p. 1209-1223.
[48] 王民, 费仁元, 切削系统可变刚度结构及其颤振控制方法的研究[J]. 机械工程学报, 2009(z1): p. 219-222.
Wang M., Fei R.Y., Reseach of Variable-stiffness Structure and Varying Stiffness Method of Chatter Control[J]. Journal of Mechnical Engineering, 2009(z1): p. 219-222.
[49] Silva, M.M.D., G.S. Venter, P.S. Varoto, R.T. Coelho, Experimental results on chatter reduction in turning through embedded piezoelectric material and passive shunt circuits[J]. Mechatronics, 2015. 29: p. 78-85.
[50] Davis, J.H., R.M. Hirschorn, Tracking control of a flexible robot link[J]. IEEE Transactions on Automatic Control, 1988. 33(3): p. 238-248.
[51] Tso, S.K., T.W. Yang, W.L. Xu, Z.Q. Sun, Vibration control for a flexible-link robot arm with deflection feedback[J]. International Journal of Non-Linear Mechanics, 2003. 38(1): p. 51-62.
[52] Shigang, Y., Weak-vibration configurations for flexible robot manipulators with kinematic redundancy[J]. Mechanism and machine theory, 2000. 35(2): p. 165-178.
[53] Chalhoub, N.G., F. Gordaninejad, Q. Lin, A. Ghazavi, Dynamic modeling of a laminated composite-material flexible robot arm made of short beams[J]. The International journal of robotics research, 1991. 10(5): p. 560-569.
[54] Tzou, H.S., G.C. Wan, Distributed structural dynamics control of flexible manipulators-I. Structural dynamics and distributed viscoelastic actuator[J]. Computers & Structures, 1990. 35(6): p. 669-677.
[55] Dadfarnia, M., N. Jalili, B. Xian, D.M. Dawson. Lyapunov-based piezoelectric control of flexible cartesian robot manipulators[C]. in American Control Conference, 2003. Proceedings of the 2003. 2003. IEEE. p. 5227-5232.
[56] 娄军强, 魏燕定, 杨依领, 谢锋然, 赵晓伟, 智能柔性机械臂的建模和振动主动控制研究[J]. 机器人, 2014(5): p. 552-559.
Lou J.Q., Wei Y.D., Yang Y.l., Xie F.R, Zhao X.W., Modeling and Active Vibration Control of an Intelligent Flexible Manipulator System[J]. Robot, 2014(5): p. 552-559.
[57] 曹青松, 周继惠, 黎林, 叶兰, 基于模糊自整定PID算法的压电柔性机械臂振动控制研究[J]. 振动与冲击, 2010. 29(12): p. 181-186.
Cao Q.S., Zhou J.H., Li L., Ye L., Vibration control of piezoelectric flexible manipulator based on fuzzy self-tuning PID algorithm[J], Journal of Vibaration and Shock, 2010. 29(12): p. 181-186.
[58] Baz, A., K. Imam, J. McCoy, Active vibration control of flexible beams using shape memory actuators[J]. Journal of Sound and Vibration, 1990. 140(3): p. 437-456.
[59] Gandhi, M.V., B.S. Thompson, S.B. Choi, S. Shakir, Electro-Rheological-Fluid-Based Articulating Robotic Systems[J]. Journal of Mechanical Design, 1989. 111(3): p. 328-336.
[60] 戴金桥, 王爱民, 宋爱国, 基于磁流变液的柔性机器人振动控制阻尼器[J]. 机器人, 2010. 32(3): p. 358-362.
Dai J.Q., Wang A.M., Song A.G., A Magneto-rheological Fluid Based Damper for Vibration Control of Flexible Robot[J]. Robot, 2010. 32(3): p. 358-362.
 

PDF(1227 KB)

Accesses

Citation

Detail

段落导航
相关文章

/