弹塑性索和粘滞阻尼器系统用于斜拉桥横向减震分析

游瀚,管仲国

振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 183-188.

PDF(1946 KB)
PDF(1946 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 183-188.
论文

弹塑性索和粘滞阻尼器系统用于斜拉桥横向减震分析

  • 游瀚,管仲国
作者信息 +

Utilization of elastoplastic cable pair and viscous damper on lateral seismic isolation of cable-stayed bridge

  • YOU Han, GUAN Zhongguo
Author information +
文章历史 +

摘要

本文旨在研究弹塑性索对与粘滞阻尼器组合减震系统用于大跨度斜拉桥横向抗震设计作用。依据Caltrans规范构建了弹塑性索对的非线性本构关系,基于永宁黄河大桥弹性索对与粘滞阻尼器组合减震系统设计,通过调增地震波幅值,使弹性索进入塑性状态并分析结构响应。研究结果表明:容许拉索进入塑性可以显著增加其变形能力,进而提高整个结构应对强震作用的能力;与塔梁固定的常规体系相比,引入弹塑性索与粘滞阻尼器组合体系可以大幅降低主塔塔底弯矩及主梁加速度响应;与理想弹性索对工况相比,采用弹塑性索对虽然会导致较大的主梁残余位移,但对于控制最大索力和改善主梁加速度响应效果明显,同时塔梁、墩梁最大相对位移和塔底弯矩基本不变。

Abstract

The feasibility of utilizing elastoplastic cable pair and viscous damper on seismic isolation of long span cable-stayed bridges is to be evaluated. Nonlinear constitutive model for elastoplastic cable pair was developed based on Caltrans. Through linearly increasing excitation intensity, the responses of the Yongning Yellow River Bridge were analyzed, in which elastic cable pair and viscous damper had been successfully applied in lateral seismic control, and the cable pairs were forced going into inelastic phase. The results show that deformation capacity of cable pairs can be greatly enhanced if certain plastic behavior is allowed and consequently the ability for the structure against strong earthquakes can be significantly improved. In comparison with the conventional system with fixed transverse girder-tower connections, the utilization of elastoplastic cable pair and viscous damper can substantially reduce the seismic responses such as base bending moment on pylon and acceleration of girder. When compared with the hypothetic case with ideal elastic cable pair, though residual displacement of the girder is relatively larger, the maximum transmitted force of the cables and the acceleration of the girder can be well controlled, while the relative displacement at the tower and pier locations and the base bending moment on tower columns are quite similar. 
 

 

关键词

斜拉桥 / 横向减震 / 弹塑性索 / 粘滞阻尼器

Key words

cable-stayed bridge / lateral seismic reduction / elastoplastic cable / viscous damper

引用本文

导出引用
游瀚,管仲国. 弹塑性索和粘滞阻尼器系统用于斜拉桥横向减震分析[J]. 振动与冲击, 2017, 36(14): 183-188
YOU Han, GUAN Zhongguo. Utilization of elastoplastic cable pair and viscous damper on lateral seismic isolation of cable-stayed bridge[J]. Journal of Vibration and Shock, 2017, 36(14): 183-188

参考文献

[1] Ha D-H, Park JH, Park K-S, Park W, Choo JF. Optimization of complex dampers for the improvement of seismic performance of long-span bridges[J]. KSCE Journal of Civil Engineering. 2009,14(1):33-40.
[2] He W L, Agrawal A K, Mahmoud K. Control of seismically excited cable-stayed bridge using resetting semiactive stiffness dampers[J]. Journal of Bridge Engineering, 2001, 6(6): 376-384.
[3] Kunde M C, Jangid R S. Seismic behavior of isolated bridges: A-state-of-the-art review[J]. Electronic Journal of Structural Engineering, 2003, 3(2): 140-169.
[4] Park K S, Koh H M, Seo C W. Independent modal space fuzzy control of earthquake-excited structures[J]. Engineering Structures, 2004, 26(2): 279-289.
[5] Sharabash A M, Andrawes B O. Application of shape memory alloy dampers in the seismic control of cable-stayed bridges[J]. Engineering Structures, 2009, 31(2): 607-616.
[6] 叶爱君, 范立础. 附加阻尼器对超大跨度斜拉桥的减震效果[J]. 同济大学学报:自然科学版, 2006, 34(7): 859-863.
YE Aijun, FAN Lichu. Seismic response reduction oI a super-long-span cable-stayed bridge by adding dampers[J]. Journal of Tongji University: Natural Science, 2006, 34(7): 859-863.
[7] Ali H E M, Abdel-Ghaffar A M. Seismic passive control of cable-stayed bridges[J]. Shock and Vibration, 1995, 2(4): 259-272.
[8] 焦驰宇, 李建中, 彭天波. 塔梁连接方式对大跨斜拉桥地震反应的影响[J]. 振动与冲击, 2009, 28(10): 179-184.
JIAO Chiyu, LI Jianzhong, PENG Tianbo. Effects oI different connecting styles between towers and deck on seismic responses of a long-span cable-stayed bridge[J]. Journal of Vibration and Shock, 2009,28(10) .
[9] 叶爱君,范立础.超大跨度斜拉桥的横向约束体系[J].中国公路学报,2007, 02:63-67.
YE Ai-jun, FAN Li-chu. Lateral Constraint Systems for Super-long-span Cable-stayed Bridge. China Journal of Highway and Transport[J],2007, 02:63-67.
[10] 冯云成, 燕斌, 牟宗军. 弹性索和阻尼器对斜拉桥横向抗震性能的影响[J]. 工程抗震与加固改造, 2009, 31(4): 24-28.
Feng Yun-cheng, Yan Bin, Mu Zong-jun. Effects of Elastic Cables and Dampers on Lateral Seismic Performance of Cable-stayed Bridge[J]. Earthquake Resistant Engineering and Retrofitting, 2009, 31(4): 24-28.
[11] 管仲国, 李建中, 朱宇. 弹塑性阻尼支座用于自锚式悬索桥减震设计[J]. 同济大学学报: 自然科学版, 2009, 37(1): 6-12.
GUAN Zhongguo, LI Jianzhong, ZHU Yu. Elastic-Plastic Energy Dissipating Bearing for Seismic Design of Self-anchored Suspension Bridge with Single Tower[J]. Journal of Tongji University: Natural Science, 2009, 37(1): 6-12.
[12] Infanti S, Papanikolas P, Benzoni G, et al. Rion antirion bridge; design and full–scale testing of the seismic protection devices[C]//Proceedings of the 13th World Conference on Earthquake Engineering. 2004.
[13] Guan Zhongguo, Li Xiaobo, Li Jianzhong. An innovative isolation system for lateral seismic control of a cable-stayed bridge with heavy deck[C]//IABSE Conference Geneva, 2015.
[14] Caltrans S D C. Caltrans Seismic Design Criteria Version 1.7[S]. California Department of Transportation, Sacramento,  2013.
[15] Mizuno H, Iiba M, Yamaguchi N, Okano H. Shaking table testing on earthquake resistance of medical equipments[R]. Building Research Institute, Ministry of Construction; 1986..

PDF(1946 KB)

430

Accesses

0

Citation

Detail

段落导航
相关文章

/