针对感应电机定子在旋转磁拉力的作用下所产生的参激弹性振动问题,采用能量法建立机、电、磁多场耦联动力学模型。利用伽辽金离散得到了常微分形式的动力学模型,并应用多尺度法揭示了重要基本参数与稳定性之间的映射关系,还给出了解析形式的不稳定边界。研究结果表明,该边界与定子支撑刚度、柔度、相电流和线圈节距等机、电、磁参数有关。采用Floquét理论计算了不稳定域,并应用龙格-库塔方法求解响应,验证了解析结果的正确性。该研究结果为参数的合理选择提供了理论借鉴。
Abstract
This work aims at the parametric vibration of the elastic stator of induction motor excited by rotating magnetic load. A mechanical-electromagnetic coupling model is established by using energy method. The ordinary differential equation is obtained by using Galerkin method. Multi-scale method is employed to reveal the relationship between the important basic parameters and stability and also provide the analytical unstable boundary. The results imply that the boundaries are dependent on the mechanical-electromagnetic parameters, including the support stiffness, bending flexibility, phase current and tooth pitch. Floquét and Runge-Kutta methods are used to obtain the instability regions and the response, respectively. The numerical results verify the conclusions from the analytical method. The results lay a theoretical reference for the parameter’s selection.
关键词
感应电机 /
弹性定子 /
参激振动 /
稳定性
{{custom_keyword}} /
Key words
induction motor /
elastic stator /
parametric vibration /
stability
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郭丹,何永勇,褚福磊.不平衡磁拉力及对偏心转子系统振动的影响[J].工程力学,2003,20(2): 116-121.
GUO Dan, HE Yong-yong, CHU Fu-lei. The calculation of unbalanced magnetic pull and its effect on vibration of an eccentric rotor [J]. Engineering Mechanics, 2003, 20(2): 116-121.
[2] 王天煜,王凤翔.大型异步电动机定子振动和模态分析[J].中国电机工程学报,2007,27(12):41-45.
Wang Tian-yu, Wang Feng-xiang. Vibration and modal analysis of stator of large induction motors [J]. Proceedings of the CSEE, 2007, 27(12): 41-45.
[3] Belmans R, Vandenput A, Geysen W. Influence of unbalanced magnetic pull on the radial stability of flexible-shaft induction machines [J]. Electric Power Applications, IEE Proceedings, 1987, 134(2): 101-109.
[4] Iwatsubo T, Kawamura S, Hayashi Y, et al. Vibration analysis of an induction motor under electromagnetic force [J]. Transactions of the Japan Society of Mechanical Engineers, 2003, 69(680): 939-944.
[5] Yang B S, Kim Y H, Son B G. Instability and imbalance response of large induction motor rotor by unbalanced magnetic pull [J]. Journal of Vibration and Control, 2004, 10(3): 447-460.
[6] Zhao Z F, Wang S Y, Yang J M, et al. Parametric instability induced by traveling magnetic load within permanent magnet motors [J]. Nonlinear Dynamics, 2015, 80(1): 827-843.
[7] Zhang D S, Wang S Y. Parametric vibration of split gears induced by time-varying mesh stiffness [J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering science, 2015, 229(1): 18-25.
[8] Canchi S V, Parker R G. Parametric instability of a circular ring subjected to moving springs [J]. Journal of Sound and Vibration, 2006, 293(1-2): 360-379.
[9] Wang S Y, Sinha S C. Parametric instability in a gear train system due to stiffness variation [C]. In: ASME IDETC/CIE, Portland, Oregon, USA, 4-7 Aug 2013.
[10] 周顺荣.电机学[M],北京,科学出版社,2007.
Zhou Shun-rong. Electric Machinery [M]. Beijing: Science Press, 2007.
[11] 胡海岩.应用非线性动力学[M],北京,航空工业出版社,2000.
Hu Hai-yan. Applied Nonlinear Dynamics [M], Beijing, Aviation Industry Press, 2000.
[12] 张瑞成,陈至坤,王福斌.单辊驱动轧机水平非线性参激振动机理研究[J].振动与冲击,2010,29(6):105–108.
Zhang Rui-cheng, Chen Zhi-kun, Wang Fu-bin. Dynamic analysis of a smart cracked beam based on the reverberation matrix method [J]. Journal of Vibration and Shock, 2010, 29(6): 105–108.
[13] 王海期.非线性振动[M],北京,高等教育出版社,1992.
Wang Hai-qi. Nonlinear Vibration [M]. Beijing, China Higher Education Press, 1992.
[14] M Farkas. Periodic motions [M], New York, Springer-Verlag, 1994.
[15] Meng P. Parametric instability investigation and stability based design for transmission systems containing face-gear drives [D]. Knoxville: University of Tennessee, 2012.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}