基于磁致伸缩作动器的拉索主动控制时滞补偿研究

孙洪鑫,李建强,王修勇,方聪

振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 208-215.

PDF(1687 KB)
PDF(1687 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 208-215.
论文

基于磁致伸缩作动器的拉索主动控制时滞补偿研究

  • 孙洪鑫,李建强,王修勇,方聪
作者信息 +

Time delay compensation research of active cable vibration control with giant magnetostrictive actuator

  • SUN hongxin   LI jianqiang  WANG xiuyong    FANG cong
Author information +
文章历史 +

摘要

拉索的大幅振动给斜拉桥安全运营带来威胁,采用磁致伸缩作动器施加轴向控制力抑制拉索横向振动是一种可行的方法,由于控制系统时滞的存在,会影响拉索控制效果和结构的稳定性。本文建立了磁致伸缩作动器动力学模型和拉索-磁致伸缩作动器面内控制系统方程,提出了基于移相法的拉索控制时滞补偿理论和拉索非线性控制系统的线性化方法,通过仿真分析得到了拉索振动控制时滞补偿效果。研究表明,在拉索-磁致伸缩作动器时滞控制系统中,移相法能够取得良好的时滞补偿效果,接近无时滞最优控制减振率。

Abstract

The large amplitude vibration of stay cables will give rise to the safe operation risk on the cable-stayed bridges. It is a kind of feasible method for cable vibration control using axial force provided by giant magnetostrictive actuator(GMA). However, time delays are frequently encountered in the actual control system, which can diminish the performance and stability of the stay cable vibration control system. In this paper, the dynamic model of GMA and motion equation of the stay cable coupling GMA control system are established. Focus to the cable coupling GMA control system with time delay and nonlinear, the time delay compensation theory is proposed based on the phase shift method, and the linearization method of is put forward. The delay compensation effect of the cable coupling GMA control system is obtained by simulation analysis. Results show that phase shift method can achieve good effect of time-delay compensation in above system, which is close to the vibration reduction rate without delay optimal control.

关键词

拉索 / 磁致伸缩作动器 / 时滞补偿 / 移相法 / 仿真分析

Key words

 stay cable / giant magnetostrictive actuator / time delay compensation / phase shift method / simulation analysis

引用本文

导出引用
孙洪鑫,李建强,王修勇,方聪. 基于磁致伸缩作动器的拉索主动控制时滞补偿研究[J]. 振动与冲击, 2017, 36(14): 208-215
SUN hongxin LI jianqiang WANG xiuyong FANG cong. Time delay compensation research of active cable vibration control with giant magnetostrictive actuator[J]. Journal of Vibration and Shock, 2017, 36(14): 208-215

参考文献

[1]Yamaguchi H, Dung N N.Active waves control of sagged-cable vibration[C].∥ Proc. 1st Int. Conf. Motion and Vibration Control,Yokohama, 7-11 Sept.1992:134-139.
[2] Fujino Y, Warnitchai P, Pacheco B M. Active stiffness control of cable vibration[J]. Journal of Applied Mechanics, ASME, 1993, 60(4): 948-953.
[3] Susumpow T, Fujino Y. Active control of multimodal cable vibrations by axial support motion[J]. Journal of Engineering Mechanics, ASCE,1995, 121(9):964 -972.
[4] Warnitchai P, Fujino Y, Susumpow T. A non-linear dynamic model for cables and its application to a cable-structure system[J]. Journal of Soundand Vibration, 1995, 187(4): 695-712.
[5] Achkire Y, Preumont A. Active tendon control of cable-stayed bridges[J]. Earthquake Engineering and Structural Dynamics, 1996, 25: 585-597.
[6] Gattulli V, Alaggio R, Potenza F. Analytical prediction and experimental validation for longitudinal control of cable oscillations[J].International Journal of Non-Linear Mechanics, 2008, 43(1): 36-52.
[7]周海俊,孙利民. 斜拉索风雨激振的形状记忆合金半主动控制数值模拟分析[J]. 防灾减灾工程学报,2008, 28(3): 308 -312. ZHOU Haijun, SUN Limin. Control of rain-wind-induced cable vibration by using shape memory alloy[J]. Journal of Disaster Prevention and Mitigation Engineering, 2008, 28(3): 308 -312. (in Chinese)
[8]朱保兵,李国强. 不同边界条件下拉索振动的主动控制研究[J].力学季刊,2009,30(3):461 -468. ZHU Baobing, LI Guoqiang. Research on active vibration control of cables under different boundary conditions[J]. Chinese Quarterly of Mechanics, 2009, 30(3):461- 468. (in Chinese).
[9]王修勇,孟庆甲,郭雪涛,等.基于磁致伸缩作动器的拉索主动控制与多级Bang-Bang控制仿真分析[J].地震工程与工程振动.2014,34(2):161-166. Wang xiuyong, Meng qingjia, Guo xuetao et,al.Research on active and multistage Bang-Bang vibration control of cables using giant magnetostrictive actuator[J].Journal of Earthquake Engineering and Engineering Vibration, 2014,34(2):161-166.(in Chinese).
[10]Yang J N, Akbarpour A, Aska r G. Effect of time delay on control of seismic-excited building [J]. Journal of Structural Engineering, ASCE, 1990, 116(10): 2801―2814.
[11]徐龙河,周云,李忠献.MRFD半主动控制系统的时滞与补偿.地震工程与工程振动,2001,21(3):127-131. Xu L H, Zhou Y, Li Zh X. Time-delay and compensation of MRFD semi-actiye control system[J]. Journal of Earthquake Engineering and Engineering Vibration, 2001,21(3):127-131.(in Chinese).
[12]王在华,胡海岩.时滞动力系统的稳定性与分岔:从理论走向应用[J].力学进展, 2013, 43(1): 3―20.
Wang Zaihua, Hu Haiyan. Stability and bifurcation of delayed dynamic system: from theory to application [J]. Advances in Mechanics, 2013, 43(1): 3 ―20. (in Chinese).
[13]Abdel-Rohman,M. Time-delay effects on active damped structures. Journal of Engineering Mechanics-ASCE, 1987,113( 11): 1709-1719.
[14]McGreery, S, Soong, T T. An experiments study of time delay compensation in active structural control. Proceedings of the sixth International Modal Analysis Conference, SEM, 1988, p. 1733-1739
[15]Chung,L L, Reinhorn,A.M, Soong,T T. Experiments On Active Control Of Seismic Structures. Journal of Engineering Mechanics-ASCE, 1988, 114(2):241-256
[16]周岱, 郭军慧. 空间结构风振控制系统的神经网络时滞补偿. 空间结构, 2008,14(2):8-13. 
Zhou D,Guo J H. Time delay compensation for wind-induced vibration control system of spatial latticed structure with neural network. Spatial structures, 2008,14(2):8-13.(in Chinese)
[17]薛晓敏,孙清,张陵,等. 基于遗传算法策略的含时滞结构振动主动控制研究[J]. 工程力学,2011,28(3):143-149.
XUE Xiaomin, SUN Qing, ZHANG Ling,et al. Research on active control for time delayed structure using modified genetic algorithm[J]. Engineering mechanics, 2011,28(3):143-149.(in Chinese)
[18] REED R S. Active vibration isolation using a magnetostrictive actuator [J].Modeling & Simulation,1988,19:73-81.
[19] Carman G P, Mitrvic M. Nonlinear constitutive relations for magnetostrictive materials with applications to 1-D problems[J]. JIntelli Mat Syst & Stru,1995,(6):673-684.
[20] Faidley L E, Lund B J, Flatau A B, et al. Tefenol-D elasto-magnetic properties under varied opening Conditions using hysteresis loop analysis[C].SPIE Symposium on Smart Structures,1998.
[21]Calkins F T, Smith R C, Flarau A B. Energy-based  hysteresis  model  for  magnetostrictive transducers[J].IEEE Trans. Magn,2000,36(2):429-439.
[22] Tan X, Baras J S. Modeling and control of hysteresis in magnetostrictive actuators[J]. Automatica, 2004, V40 (9): 1469-1480.
[23] Moon S J, Lim C W, Kim B H, et,al. Structural  vibration  control  using  linear magnetostrictive actuators[J]. Journal of Sound and Vibration, 2007, V302(4-5):875–891.
[24] Grunwald A, Olabi A G. Design of a magnetostrictive (MS) actuator[J]. Sensors and Actuators A, 2008, V144 (1): 161–175.
[25]王修勇.斜拉桥拉索振动控制新技术研究[D].长沙:中南大学,2002:97-100. Wang Xiuyong. Study of New Techniques for Suppressing Cables Vibration on the Cable-Stayed Bridges[D]. Chang sha: Central south university, 2002:97-100.(in Chinese)

PDF(1687 KB)

323

Accesses

0

Citation

Detail

段落导航
相关文章

/