低功耗机械振动无线传感器网络节点结构设计

曾超1,汤宝平1,肖鑫1, 陈天毅2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 33-37.

PDF(1283 KB)
PDF(1283 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 33-37.
论文

低功耗机械振动无线传感器网络节点结构设计

  • 曾超1,汤宝平1,肖鑫1, 陈天毅2
作者信息 +

Low power architecture design method of mechanical vibration wireless sensor networks node

  • ZENG Chao1,TANG Bao-ping1,XIAO Xin1,CHEN Tian-yi2
Author information +
文章历史 +

摘要

针对目前机械振动无线传感器网络节点能耗高的问题,提出一种低功耗节点硬件结构设计方法。采用低功耗、高灵敏度MEMS加速度传感器采集机械振动信号,简化电源及调理电路;采用通带可调的开关电容低通滤波器,实现低功耗动态抗混叠滤波;在充分考虑存储速度的前提下,采用低读写电流的外部Flash存储芯片实现连续、高速数字信号流的存储;采用片上系统级芯片作为整体控制核心,集采集、存储、无线传输于一体,在保证机械振动信号采集性能的同时,极大的减小节点体积与功耗。对比实验结果表明基于该低功耗硬件结构的机械振动无线传感器网络节点具有较低的功耗水平。

Abstract

Aiming at the problem of the high energy consumption of current mechanical vibration wireless sensor networks node, a low power architecture design method is proposed. A low power, high sensitivity MEMS accelerometer is adopted to pick up mechanical vibration signal, which simplifies power and conditioning circuit; a switched capacitor low-pass filter with adjustable passband is adopted to realize dynamic anti-aliasing; a Flash storage chip with low operating current is adopted to store the continuous, high-rate digital signal stream, which takes into full consideration of the storage speed. A SOC is adopted to act as the whole control core, which controls the acquisition, storage, wireless transmission process. Besides ensuring the mechanical vibration signal acquisition performance, the SOC greatly reduces the nodal size and energy consumption. The energy consumption comparison between the proposed low power architecture and a typical dual-core-processor architecture is conducted, and the experiment results indicate that mechanical vibration wireless sensor networks node based on the proposed low power architecture has low energy consumption.
 

关键词

机械振动监测 / 无线传感器网络 / 低功耗 / 硬件结构

Key words

machine vibration monitoring / wireless sensor networks / low energy consumption / architecture

引用本文

导出引用
曾超1,汤宝平1,肖鑫1, 陈天毅2. 低功耗机械振动无线传感器网络节点结构设计[J]. 振动与冲击, 2017, 36(14): 33-37
ZENG Chao1,TANG Bao-ping1,XIAO Xin1,CHEN Tian-yi2. Low power architecture design method of mechanical vibration wireless sensor networks node[J]. Journal of Vibration and Shock, 2017, 36(14): 33-37

参考文献

[1] Aqeel-ur-Rehman, Abbasi A Z, Islam N, et al. A review of wireless sensors and networks' applications in agriculture[J]. Computer Standards & Interfaces, 2014, 36(2):263-270.
[2] Pakzad S N, Fenves G L. Statistical Analysis of Vibration Modes of a Suspension Bridge Using Spatially Dense Wireless Sensor Network[J]. Journal of Structural Engineering, 2014, 135(7):863-872.
[3] 张静静, 赵泽, 陈海明,等. EasiSolar:一种高效的太阳能传感器网络节点系统设计与实现[J]. 仪器仪表学报, 2012, 33(9):1952-1960.
Zhang J, Zhao Z, Chen H, et al. EasiSolar: Design and implementation of a high-efficiency solar energy-harvesting sensor node system[J]. Chinese Journal of Scientific Instrument, 2012, 33(9):1952-1960.
[4] 汤宝平, 黄庆卿, 邓蕾,等. 机械设备状态监测无线传感器网络研究进展[J]. 振动、测试与诊断, 2014, 34(1):1-7.
 TANG B P, HUANG Q Q, DENG L, et al. Research progress and challenges of wireless sensor networks for machinery equipment condition monitoring[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(1): 1-7.
[5] Heo G, Jeon J. An Artificial Filter Bank (AFB) for Structural Health Monitoring of Civil Structures – Part2: An Implementation and Evaluation of the AFB[J]. Procedia Engineering, 2015, 114(2-3):564-573.
[6] Fraser M, Elgamal A, He X, et al. Sensor Network for Structural Health Monitoring of a Highway Bridge[J]. American Society of Civil Engineers, 2014, 24(1):11-24.
[7] Gungor V C, Hancke G P. Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches[J]. IEEE Transactions on Industrial Electronics, 2009, 56(10):4258-4265.
[8] Hou L, Bergmann N W. System requirements for industrial wireless sensor networks[C]// Proceedings of the 15th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2010. IEEE, 2010:1 - 8.
[9] VOGL A, WANG D T, STORÅS P, et al. Design, process and characterisation of a high-performance vibration sensor for wireless condition monitoring[J]. Sensors and actuators a: physical, 2009, 153(2): 155-161.
[10] Ramachandran V R K, Sanchez Ramirez A, Van d Z B J, et al. Energy-efficient on-node signal processing for vibration monitoring[C]// IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks & Information Processing. IEEE, 2014:1 - 6.
[11] 蔡巍巍,汤宝平,黄庆卿. 面向机械振动信号采集的无线传感器网络节点设计[J]. 振动与冲击,2013, 32(1): 73-77.
 CAI Wei-wei, TANG Bao-ping, HUANG Qing-qing. Design of wireless sensor network node for collecting mechanical vibration signals[J]. Journal of vibration and shock, 2013, 32(1): 73-77.
[12] 黄庆卿, 汤宝平, 邓蕾,等. 机械振动无线传感网络数据分块无损压缩方法[J]. 仪器仪表学报, 2015, 36(7):1605-1610.
 HUANG Q Q, TANG B P, DENG L, et al. Data block-based lossless compression for machine vibration wireless sensor networks[J]. Chinese Journal of Scientific Instrument, 2015, 36(7):1605-1610.
[13] Khoshnoud F, De Silva C W. Recent advances in MEMS sensor technology-mechanical applications[J]. IEEE Instrumentation & Measurement Magazine, 2012, 15(15):14-24.
[14] Benoit Latré, Mil P D, Moerman I, et al. Throughput and Delay Analysis of Unslotted IEEE 802.15.4[J]. Journal of Networks, 2006, 1(1):20-28.
[15] Borghesani P, Pennacchi P, Chatterton S, et al. The velocity synchronous discrete Fourier transform for order tracking in the field of rotating machinery[J]. Mechanical Systems & Signal Processing, 2014, 44(s 1–2):118-133.

PDF(1283 KB)

410

Accesses

0

Citation

Detail

段落导航
相关文章

/