基于螺旋型耳蜗的数值分析

陈懿强 1,姚文娟 1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 45-51.

PDF(1424 KB)
PDF(1424 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 45-51.
论文

基于螺旋型耳蜗的数值分析

  • 陈懿强 1 , 姚文娟 1
作者信息 +

Numerical Simulation Based on Spiral Cochlear

  •  Chen Yiqiang 1   Yao Wenjuan 1
Author information +
文章历史 +

摘要

利用Patran建立包括前庭阶、鼓阶、基底膜、圆窗、卵圆窗在内的三维空间螺旋耳蜗模型。结合Nastran对基底膜进行频率响应分析,得到基底膜位移响应与耳蜗内压力(包括前庭阶与鼓阶处的压力),计算结果与相关实验吻合,验证了模型的正确性。基于空间螺旋模型研究了流体黏度对于耳蜗阻抗的影响以及正向、逆向激励对于基底膜12mm处沿横向位移幅值的影响。结果表明,由于流体黏度的存在增大了耳蜗的阻抗。同时,当频率较高时,在正,逆不同激励作用下,相对于简化的直腔耳蜗模型,螺旋基底膜的曲率对基底膜沿横向的幅值影响较大,从侧面反应出螺旋耳蜗结构本身的曲率对基底膜感音域的扩大作用。

Abstract

In this paper, a three-dimensional passive spiral cochlear model which includes the oval window (OW), round window (RW), basilar membrane (BM) is established. Harmonic response analysis is then carried out. Results on the cochlear impedance, basilar membrane response and intracochlear pressure which contain the scala vestibule and scala tympani pressure are obtained. The satisfactory agreements between the model results and the experimental data in the literature prove the validity of the finite element (FE) model. Based on the FE model, the effect of fluid viscosity to the cochlear impedance and variation of the amplitude of the BM in a transverse direction at 12mm under normal forward sound stimulation and reverse RW stimulation have been discussed. The results suggest that the cochlear impedance is increased because of the fluid viscosity. In the meantime, compared with the simplified uncoiled model, the curvature of the spiral BM has a great effect on the amplitude in a transverse direction at high frequencies under different stimulations and the range of sense in frequency is expanded on account of the spiral geometrical characteristic.
 

关键词

螺旋耳蜗 / 耳蜗阻抗 / 逆向激励 / 流体黏度 / 基底膜曲率

Key words

spiral cochlear / cochlear impedance / reverse stimulation / fluid viscosity / curvature of the BM;

引用本文

导出引用
陈懿强 1,姚文娟 1. 基于螺旋型耳蜗的数值分析[J]. 振动与冲击, 2017, 36(14): 45-51
Chen Yiqiang 1 Yao Wenjuan 1 . Numerical Simulation Based on Spiral Cochlear[J]. Journal of Vibration and Shock, 2017, 36(14): 45-51

参考文献

[1]. von Békésy G. Experiments in Hearing. [M]. New York: McGraw-Hill Book Company, Inc, 1960.
[2]  Hillery C M, Narins P M. Neurophysiological evidence for a traveling wave in the amphibian inner ear.[J]. Science, 1984, 225(4666):1037-1039.
[3] Olson E S. Direct measurement of intra-cochlear pressure waves.[J]. Nature, 2000, 402(6761):526-529.
[4]. Olson E S. Observing middle and inner ear mechanics with novel intracochlear pressure sensors.[J]. Acoustical Society of America Journal, 1998, 103(6):3445-3463.
[5]. Olson E S. Intracochlear pressure measurements related to cochlear tuning.[J]. Journal of the Acoustical Society of America, 2001, 110(1):349-367.
[6]. Nakajima H H, Dong W, Olson E S, et al. Differential Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones[J]. Jaro Journal of the Association for Research in Otolaryngology, 2009, 10(1):23–36.
[7].Zwislocki J J. The role of the external and middle ear in sound transmission.[C]// Tower D.B.. The Nervous System, Vol. 3, Human Communication and its Disorders., New York :Raven Press,1975. 44–55.
[8].  Merchant S N, Ravicz M E, Rosowski J J. Acoustic input impedance of the stapes and cochlea in human temporal bones[J]. Hearing Research, 1996, 97(1-2):30-45.
[9]. Puria S , Peake W T, Rosowski J J. Sound-pressure measurements in the cochlear vestibule of human-cadaver ears.[J]. Journal of the Acoustical Society of America, 1997, 101(1):2754-2770.
[10]. Aibara R, Welsh J T, Puria S, et al. Human middle-ear sound transfer function and cochlear input impedance.[J]. Hearing Research, 2001, 152(1-2):100–109.
[11]. 田佳彬,饶柱石,塔娜,等.粘弹性本构对于人耳动力学特性影响的数值研究[J].振动与冲击,2015,34(22):74-81.
[12]. Johnstone B M, Boyle A J F. Basilar membrane vibration examined with the Mössbauer technique.[J]. Science, 1967, 158(3799):389-390.
[13]. Khanna S M, Leonard D G. Basilar membrane tuning in the cat cochlea.[J]. Science, 1982, 215(4530):305-306.
[14]. Gundersen T, Skarstein O, Sikkeland T. A Study of the Vibration of the Basilar Membrane in Human Temporal Bone Preparations by the Use of the Mossbauer Effect[J]. Acta Oto-laryngologica, 2009, 86(3-4):225-232.
[15]. Mammano F , Ashmore J F. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry.[J]. Nature, 1993, 365(6449):838-841.
[16]. Allen J B. Two-dimensional cochlear fluid model: new results.[J]. Journal of the Acoustical Society of America, 1977, 61(1):110-119.
[17]. Neely S T. Finite difference solution of a two-dimensional mathematical model of the cochlea.[J]. Journal of the Acoustical Society of America, 1981, 69(5):1386-1393.
[18]. Parthasarathi A A, Grosh K ,, Nuttall A L. Three-dimensional numerical modeling for global cochlear dynamics.[J]. Journal of the Acoustical Society of America, 2012, 107(1):474-485.
[19]. Lim K M, Steele C R. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method[J]. Hearing Research, 2002, 170(s 1–2):190-205.
[20]. Parthasarathi AA, Grosh K, Nuttall AL. Three-dimensional numerical modelling for global cochlear dynamics[J]. J Acoust Soc Am,2000,107(1):474-485.
[21]. Martin H, Alan C, Giles H, et al. Mathematical modeling of the radial profile of basilar membrane vibrations in the inner ear.[J]. Journal of the Acoustical Society of America, 2004, 116(2):1025-1034.
[22]. Guangjian N, Elliott S J. Effect of basilar membrane radial velocity profile on fluid coupling in the cochlea.[J]. Journal of the Acoustical Society of America, 2013, 133(3):181-187.
[23]. Ma JW, Yao WJ. Research on the distribution of pressure field on the basilar membrane in the passive spiral cochlea.[J].J Mech Med Biol , 2014,14(4).
[24]. Skrodzka EB. Modelling of some mechanical malfunctions of the human basilar membrane.[J].Applied Acoustics,2005,66(9): 1007-1017.
[25]. Bohnke F, Arnold W. 3D-finite element model of the human cochlea including fluid-structure couplings.[J]. ORL, 1999, 61(5):305-310.
[26]. Gan R Z, Reeves B P, Wang X. Modeling of sound transmission from ear canal to cochlea.[J]. Annals of Biomedical Engineering, 2007, 35(12):2180-2195.
[27]. Xuelin W, Liling W, Jianjun Z, et al. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.[J]. Computer Methods in Biomechanics & Biomedical Engineering, 2014, 17(10):1096-1107.
[28]. Kim N, Homma K, Puria S. Inertial bone conduction: symmetric and anti-symmetric components.[J]. Journal of the Association for Research in Otolaryngology, 2011, 12(3):261-279.
[29]. Zhang X, Gan R Z, A comprehensive model of human ear for analysis of implantable hearing devices.[J]. IEEE transactions on bio-medical engineering, 2011, 58(10):3024-3027.
[30]. Hall JJW, Mueller HG.Audiologist's Desk Reference Volume II: Audiolologic Management, Rehabilitation and Terminology. [M].Singular, 1998.
[31]. Marc Thorne B S, Salt A N, Ma D M, et al. Cochlear Fluid Space Dimensions for Six Species Derived From Reconstructions of Three-Dimensional Magnetic Resonance Images .[J]. Laryngoscope, 1999, 109(109):1661-1668.
[32]. Wang Z L. FEM Simulation of Sound Transmission Based on Integrated Model of Middle Ear and Cochlea[J]. Chinese Journal of Biomedical Engineering, 2011, 30(1):60-66.
[33]. Gundersen T, Skarstein O, Sikkeland T. A Study of the Vibration of the Basilar Membrane in Human Temporal Bone Preparations by the Use of the Mossbauer Effect[J]. Acta Oto-laryngologica, 2009, 86(3-4):225-232.
[34]. Stenfelt S, Puria S, Hato N, et al. Basilar membrane and osseous spiral lamina motion in human cadavers with air and bone conduction stimuli.[J]. Hearing Research, 2003, 181(1-2):131–143.
[35]. Kim N, Homma K, Puria S. Inertial bone conduction: symmetric and anti-symmetric components.[J]. Journal of the Association for Research in Otolaryngology, 2011, 12(3):261-279.
[36]. Greenwood D D. A cochlear frequency-position function for several species--29 years later.[J]. Acoustical Society of America Journal, 1990, 87(6):2592-2605.
[37]. Vittorio C, Soli S D, Marco C, et al. Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window.[J]. International Journal of Audiology, 2006, 45(10):600-8.

PDF(1424 KB)

328

Accesses

0

Citation

Detail

段落导航
相关文章

/