多失效模式下多状态伺服转塔刀架系统频率可靠性分析

刘晨曦1, 陈南2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 76-84.

PDF(1612 KB)
PDF(1612 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 76-84.
论文

多失效模式下多状态伺服转塔刀架系统频率可靠性分析

  • 刘晨曦1, 陈南2
作者信息 +

Frequency reliability analysis of multi-state servo turret system with multiple failure modes

  • LIU Chen-xi1   CHEN Nan2
Author information +
文章历史 +

摘要

根据频率响应函数特性曲线的连续性,传统频率可靠性分析中仅将共振区与非共振区二分化值得商榷。本文提出了多失效模式下多状态频率可靠性分析方法,综合考虑影响系统固有频率各结构参数的随机性、激励频率的随机性,应用Monte Carlo仿真估计出系统频率可用度,并根据相关性分析识别各结构随机参数对系统频率可靠性的影响。将该方法用于基于多体系统传递矩阵法所建立的伺服转塔刀架系统动力学模型中,研究了其频率可用度以及与系统状态最为相关的结构参数,所得分析结果为系统优化设计提供了依据。

Abstract

According to the continuity of frequency response function curve, dichotomy of resonance and non-resonant zone in conventional frequency reliability analysis is debatable. New method of multi-state frequency reliability analysis with multiple failure modes is proposed, in which, randomness of structural parameters and excitation frequency are considered. Monte Carlo simulation is applied to estimate the system frequency availability, simultaneously, accordance with correlation analysis, influences of each structural random parameters are identified. The new method is applied in the servo turret system, whose dynamic model is established by transfer matrix method of multibody system. Then, its frequency availability and the most related structural parameter are obtained, which provides the basis for further optimization.
 

关键词

伺服转塔刀架 / 多失效模式 / 多状态 / 频率可靠性 / 相关性

Key words

servo turret / multiple failure modes / multi-state / frequency reliability / correlation

引用本文

导出引用
刘晨曦1, 陈南2. 多失效模式下多状态伺服转塔刀架系统频率可靠性分析[J]. 振动与冲击, 2017, 36(14): 76-84
LIU Chen-xi1 CHEN Nan2. Frequency reliability analysis of multi-state servo turret system with multiple failure modes[J]. Journal of Vibration and Shock, 2017, 36(14): 76-84

参考文献

[1] Lü C, Zhang Y, Wang X, et al. Frequency reliability-based robust design of the suspension device of a jarring machine with arbitrary distribution parameters[J]. Mechanics Based Design of Structures and Machines, 2015, 43(4): 487-500.
[2] 吕春梅, 张义民, 冯文周, 等. 多跨转子系统频率可靠性灵敏度与稳健设计[J]. 机械工程学报, 2012, 48(10): 178-183.
LU Chun-mei, ZHANG Yi-min, FENG Wen-zhou, et al. Frequency Reliability Sensitivity and Robust Design of the Multispan Rotor System [J]. Journal of Mechanical Engineering, 2012, 48(10): 178-183.
[3] Xu B, Jiang J, Tong W, et al. Topology group concept for truss topology optimization with frequency constraints[J]. Journal of Sound and Vibration, 2003, 261(5): 911-925.
[4] 翟红波, 吴子燕, 刘永寿, 等. 两端简支输流管道共振可靠度分析[J]. 振动与冲击, 2012, 31(12): 160-164.
ZHAI Hong-bo, WU Zi-yan. LIU Yong-shou, et al. Analysis of resonance reliability for a simply supported pipe conveying fluid[J]. Journal of Vibration and Shock, 2012, 31(12): 160-164.
[5] 黄益民, 刘伟, 刘永寿, 等. 充液管道模态的参数灵敏度及其共振可靠性分析[J].振动与冲击, 2010, 29(1): 193-195+246.
HANG Yi-min, LIU Wei, LIU Yong-shou, et al. Parameter sensitivity and resonance reliability of a fluid-filled pipeline[J]. Journal of Vibration and Shock, 2010, 29(1): 193-195+246.
[6] Meng L, Li S, Li H, et al. Frequency reliability sensitivity analysis for rotor system with random parameters[C]//Applied Mechanics and Materials. 2014, 670: 1029-1032.
[7] 冯文周, 曹树谦, 赵峰, 等. 电梯系统共振失效的灵敏度研究[J].振动与冲击, 2015, 34(1): 165-170.
FENG Wen-zhou, CAO Shu-qian, ZHAO Feng, et al. Resonance failure sensitivity for elevator system[J]. Journal of Vibration and Shock, 2015, 34(1): 165-170.
[8] 辛晓辉, 曹树谦, 陈予恕. 30m2双层非线性共振筛模态计算与动态性能评价[J]. 煤炭学报, 2005, 30(2): 247-240.
XIN Xiao-hui, CAO Shu-qian, CHEN Yu-shu. Modal analysis and evaluation of dynamic characteristic for the 30m2 nonlinear resonance screen with two decks[J]. Journal of China Coal Society, 2005, 30(2): 247-240.
[9] Zio E, Marella M, Podofillini L. A Monte Carlo simulation approach to the availability assessment of multi-state systems with operational dependencies[J]. Reliability Engineering & System Safety, 2007, 92(7): 871-882.
[10] Liu C, Chen N, Yang J. New method for multi-state system reliability analysis based on linear algebraic representation[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2015, 229(5):469-482.
[11] Lisnianski A, Levitin G. Multi-state system reliability: assessment, optimization and applications[M]. Singapore: World scientific, 2003.
[12] 何斌, 芮筱亭, 贠来峰, 等. 自行火炮固有频率相关性分析的 Monte Carlo 传递矩阵法[J]. 振动与冲击, 2008, 27(11): 83-86.
HE Bin, RUI Xiao-ting, YUN Lai-feng, et al. Monte carlo transfer matrix method for analysis of natural frequency correlation for self-propelled artilary[J]. Journal of Vibration and Shock, 2008, 27(11): 83-86.
[13] Rui X, Wang G, Lu Y, et al. Transfer matrix method for linear multibody system[J]. Multibody System Dynamics, 2008, 19(3): 179-207.
[14] Yoshimura M. Computer-aided design improvement of machine tool structure incorporating joint dynamics data[J]. Annals of the CIRP, 1979, 28(1): 241-246.
[15] 李浦, 袁奇, 高进. 应变能理论在端面齿连接段刚度的应用方法研究[J]. 热力透平, 2012, 41(1): 44-48.
LI Pu, YUAN Qi, GAO Jin. Study on the stiffness calculation of hirth facial serration couplings using strain energy theory[J]. Thermal Turbine, 2012, 41(1): 44-48.
[16] 罗继伟, 罗天宇. 滚动轴承分析计算与应用[M]. 北京: 机械工业出版社, 2009. 90-91.
[17] 池巧君, 吕震宙, 宋述芳. 截断正态分布情况下失效概率计算的截断重要抽样法[J]. 计算力学学报, 2010, 27(6): 1079-1084.
CHI Qian-jun, LV Zhen-zhou, SONG Shu-fang. Truncated importance sampling method for failure probability estimation with truncated normal distribution[J]. Chinese Journal of Computational Mechanics, 2010, 27(6): 1079-1084

PDF(1612 KB)

Accesses

Citation

Detail

段落导航
相关文章

/