基于稀疏带宽模态分解的变转速滚动轴承故障诊断

潘海洋1,郑近德1,2,童宝宏1,张良安1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 92-97.

PDF(1872 KB)
PDF(1872 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (14) : 92-97.
论文

基于稀疏带宽模态分解的变转速滚动轴承故障诊断

  • 潘海洋1,郑近德1,2,童宝宏1,张良安1,2
作者信息 +

A fault diagnosis approach for roller bearing based on Sparse Bandwidth Mode Decomposition under variable speed condition

  • Pan Haiyang1,2 ,Zheng Jinde1,Tong Baohong1,Zhang Liangan1,2
Author information +
文章历史 +

摘要

针对以往信号处理方法的存在缺陷,提出了一种新的非平稳信号分析方法—稀疏带宽模态分解(Sparse bandwidth mode decomposition,简称SBMD).该方法将信号分解转化为约束变分问题,自适应地将信号分解为若干个IMF分量之和。另外,在变转速工况下,滚动轴承故障振动信号中含丰富的状态信息,将SBMD、阶次追踪分析和包络谱相结合应用于变转速工况条件下的滚动轴承故障诊断问题。实验分析结果表明,采用SBMD阶次包络谱方法可以及时有效的诊断变转速工况下的滚动轴承故障诊断问题。

Abstract

Target to the defect of previous signal processing method, a new non-stationary signal analysis method, namely the sparse bandwidth mode decomposition (SBMD) is proposed in this paper. The essence of this method is that signal decomposition is converted into constrained variational problem, and the signal is decomposed into a set of IMFs by SBMD. In addition to, the vibration signals of roller bearing with variable speed usually have more comprehensive status information, SBMD is applied to the working condition problem of rolling bearing fault diagnosis under the condition of variable speed combined with, order tracking analysis and envelope spectrum. The analysis results from experimental that SBMD order envelope spectrum approach can handle the problem of roller bearing fault diagnosis under variable speed condition accurately and effectively.

关键词

稀疏带宽模态分解 / 阶次追踪分析 / 包络谱 / 滚动轴承 / 故障诊断

Key words

Sparse bandwidth mode decomposition / order tracking analysis / envelope spectrum / roller bearing / fault diagnosis;

引用本文

导出引用
潘海洋1,郑近德1,2,童宝宏1,张良安1,2. 基于稀疏带宽模态分解的变转速滚动轴承故障诊断[J]. 振动与冲击, 2017, 36(14): 92-97
Pan Haiyang1,2,Zheng Jinde1,Tong Baohong1,Zhang Liangan1,2. A fault diagnosis approach for roller bearing based on Sparse Bandwidth Mode Decomposition under variable speed condition[J]. Journal of Vibration and Shock, 2017, 36(14): 92-97

参考文献

[1] 李志农,丁启全,吴昭同,等.旋转机械升降速过程的双谱-FHMM识别方法 [J]. 振动工程学报.2003, 16(2):171-174.
LI Z L, DING Q Q, WU ZH T ,et al. Study on Bispectrum-FHMM Recognition Method in Speed-up and Speed-down Process of Rotating Machinery [J]. Journal of Vibration Engineering, 2003, 16(2):171-174.
[2] 康海英,栾军英,郑海起,等.基于阶次跟踪和经验模态分解的滚动轴承包络解调分析.机械工程学报.2007, 43(8):119-122.
KANG H Y, LUAN J Y, ZH H Q, et al. Envelope demodulation analysis of bearing based on order tracking and empirical mode decomposition [J]. Chinese Journal of Mechanical Engineering. 2007, 43(8): 119-122
[3] WU J D , Wang YuHsuan, PengHsin Chiang, et al. A study of fault diagnosis in a scooter using adaptive order tracking technique and neural network [J]. Expert Systems with Applications.2009, 36(1): 49-56.
[4] WANG H C, CHEN J, DONG G M. Feature extraction of rolling bearing’s early weak fault based on EEMD and tunable Q-factor wavelet transform [J]. Mechanical Systems and Signal Processing, 2014, 48, (1–2): 103-119
[5] FENG Z P, LIANG M, CHU F L. Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples [J]. Mechanical Systems and Signal Processing, 2013, 38(1): 165-205.
[6] JONATHAN S S. The local mean decomposition and its application to EEG perception data [J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454
[7] 程军圣,郑近德,杨宇.一种新的非平稳信号分析方法——局部特征尺度分解[J].振动工程学报.2012, 25(2):215-220.
CHENG J S, ZHENG J D, YANG Y. A non-stationary signal analysis approach—the local characteristic-scale decomposition method [J]. Journal of Vibration Engineering, 2012, 25(2): 215-222.
[8] HOU T Y, Z. HI Z Q. Adaptive data analysis via sparse time-frequency representation [J]. Advances in Adaptive Data Analysis, 2011, 3(1-2):1-28.
[9] LI C, LIANG M, A generalized synchrosqueezing transform for enhancing signal time–frequency representation [J]. Signal Processing, 2012, 92: 2264–2274.
[10] 郑近德,程军圣,杨宇. 部分集成局部特征尺度分解:一种新的基于噪声辅助的数据分析方法[J]. 电子学报, 2013, 41(5),1030-1035
ZHENG J D, CHENG J S, YANG Y. Partly Ensemble Local Characteristic-Scale Decomposition: A New Noise Assisted Data Analysis Method [J]. Acta Electronica Sinica, 2013, 41(5), 1030-1035
[11] DRAGOMIRETSKIY K, ZOSSO D. Variational Mode Decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3):531 - 544.
[12] RILLING G, FLANDRIN P, GONCALVES P. On empirical mode decomposition and its algorithms [A]. Proceedings of IEEE- EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03 [C]. Grado, Italy, 2003.

PDF(1872 KB)

405

Accesses

0

Citation

Detail

段落导航
相关文章

/