为了深入分析单层双向偏心结构平扭耦联参数的影响规律,建立单层双向偏心结构(3自由度)的动力方程,并采用数学领域中三次方程求解的盛金公式,推导出单层双向偏心结构的动力特性显式解析解。根据所得显式解的形式及其对应的判定条件,在合理范围内提取出不同于单向偏心体系的影响参数,分别为:相对偏心距、偏心角、主扭平频率比以及次扭平频率比。根据盛金公式推导所得的显式解析解,总结出结构的主要动力特性指标(频率和振型),进而分析了每个参数对双向偏心结构的平扭耦联特性的影响。结果表明,双向偏心结构平扭耦联参数与单向偏心结构有相似之处,但更为复杂,会涉及到主扭平频率比与次扭平频率比,且两者影响程度也有明显区别。
Abstract
In order to further analyzed the influence of the translational-torsion coupling parameters of the general single-layer bidirectional asymmetric structure, the paper established the dynamic equation of a single bi-eccentric structure (3 degrees of freedom), and derived the explicit analytical solution of the dynamic characteristics of the single-layer bidirectional eccentric structure using the method in mathematics field for solving cubic equations, which is Sheng-jin formula. The Influencing parameters were extracted according to the form of the explicit solution and determination condition. And they were different from which of one-way asymmetric structure, including eccentric distance, eccentric angle, main torsion-translational frequency ratio and minor torsion-translational frequency ratio. According to the structure of the main dynamic characteristic index (frequencies and modes) deduced from the explicit analytical solution, we analyzed the influence of each parameter on translational-torsion coupling characteristics of single-layer bidirectional eccentric structure. The results showed that the translational-torsion coupling parameters of two-way eccentric structure were similar to which of one-way eccentric structure, but more complex. It involved the main torsion -translational frequency ratio and the minor torsion-translational frequency ratio .And the degree of influence of each was different.
关键词
双向偏心结构 /
解析解 /
影响参数 /
偏心距 /
偏心角 /
扭平频率比
{{custom_keyword}} /
Key words
bidirectional asymmetric structure /
analytical solution /
influencing parameters /
eccentric distance /
eccentric angle /
torsion-translational frequency ratio
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 梁莉军,黄宗明,杨溥. 各国规范关于结构地震下抗扭设计方法的对比[J],重庆建筑大学学报,2002,24(2):52-56.
LIANG Li-jun, HUANG Zong-ming, YANG Pu. The Comparison of Codes about the Method of Anti - torsion Design under the Earthquake [J], Journal of Chongqing Jianzhu University, 2002,24(2):52-56. (in Chinese)
[2] Hejal, A.K.Chopra.Earthquake response of torsionally coupled frame buildings[J].Journal of Structural Engineering,1989,115(4):834-851
[3] Arturo Tena-Colunga, Christian Zambrana-Rojas. Dynamic torsional amplifications of base-isolated structures with an eccentric isolation system [J], Engineering Structures, 2006,28:72-83.
[4] Arturo Tena-Colunga, Jose Luis Escamilla-Cruz. Torsional amplifications in asymmetric base-isolated structures [J], Engineering Structures, 2007,29:237-247.
[5] Wilkinson,Thambiratnam. Simplified procedure for seismic analysis of asymmetric Buildings [J].Computer & Structures,2001, 79:2833-2845.
[6] Kilara,Petrovcic,Korena,Silih. Seismic analysis of an asymmetric fixed base and base-isolated high-rack steel structure [J], Engineering Structures, 2011,33:3471-3482.
[7] 邬瑞锋,蔡贤辉,曲乃泗. 多层及高层房屋扭转耦联弹塑性地震反应的研究[J],大连理工大学学报, 1999,39(4):471-477.
Wu Rui-feng, Cai Xian-hui, Qu Nai-si . Study On Inelastic Torsional Coupled Seismic Response of Multistory and High Rise Buildings[J], Journal of Dalian University of Technology, 1999,39(4):471-477. (in Chinese)
[8] 戴君武, 张敏政. 偏心结构扭转振动研究中几个基本参量的讨论[J], 地震工程与工程震动, 2002,22(6):38-43.
DAI Jun-wu, ZHANG Min-zheng. Discussion on several basic parameters in study of seismic torsional effects of asymmetric structures [J], Earthquake Engineering and Engineering Vibration, 2002,22(6):38-43. (in Chinese)
[9] Miltiadis T. Kyrkos, Stavros A. Anagnostopoulos. Improved earthquake resistant design of eccentric steel buildings [J], Soil Dynamics and Earthquake Engineering, 2013,47:144-156.
[10] GB 50011-2010,建筑抗震设计规范[S], 北京:中国建筑工业出版社, 2010.
[11] 龙驭球,包世华,匡文起,袁驷. 结构力学Ⅱ—专题教程[M], 第二版,高等教育出版社, 2006,:172-173.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}