膨胀环是研究战斗部爆炸破片形成机理的重要手段。本文通过引入修正的B-W内聚力断裂模型ABAQUS子程序,开展了膨胀环碎裂过程的数值仿真计算,并将整个膨胀碎裂过程划分为四个阶段,并讨论了膨胀速度对破片质量分布和破片数量的影响,进一步研究了厚度对碎裂模式的影响。得到以下结论:(1)膨胀碎裂过程可以分为整体塑性、稳定颈缩、局部颈缩发展和最终碎裂形成四个阶段;(2)破片数量随着初始膨胀速度增加而增大,且质量分布服从Rayleigh分布;(3)径厚比的变化改变了变形后期的应力状态,薄壳结构的应力以受拉为主,而厚壳结构后期出现剪切应力状态从而使得断裂模式由拉伸径缩失效逐渐过渡到剪切失效。
Abstract
Expanding ring is a useful method to study warhead fragments.The material behavior is studied based on the correction cohesion fracture model through ABAQUS subroutine. The fragmentation process is simulated and obviously divided into four stages; the quality distribution laws and the quantity of fragments influenced by expanding speed are discussed, as well as the fragmentation model affected by the thickness of the ring is studied. Indeed, the fragmentation process started from overall plastic deformation, then steady necking, and then local necking developing, finally fragmentizing. The results have shown that the quantity of fragments would increase with the initial expanding speed and the quality distribution of fragments would obey Rayleigh distribution law; finally the stress state and fragmentation model would be affected by the radius-thickness ratio
关键词
反舰导弹 /
膨胀环 /
爆炸破片 /
Rayleigh分布 /
应力三轴度
{{custom_keyword}} /
Key words
anti-ship missile /
expanding ring ;explosion fragmentation /
Rayleigh distribution law /
stress triaxiality
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Mott N F. Fragmentation of Shell Cases[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1947, 189: 300-308.
[2] Scheffler D R, Zuka J A. Practical aspects of numerical simulation of dynamic events: material interfaces[J]. International Journal of Impact Engineering, 2000, 24(8): 821-842.
[3] Zukas J A, Scheffler D R. Practical aspects of numerical simulations of dynamic events: effects of meshing[J]. International Journal of Impact Engineering, 2000, 24(9): 925-945.
[4] Gurson. Plastic flow and fracture behavior of ductile meterials incorporating void nucleation,growth and interaction[D]. Brown University, 1975.
[5] Johnson G R, Cook W H. Fracture Characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21: 31-48.
[6] Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98.
[7] Barsoum I, Faleskog J. Rupture mechanisms in combined tension and shear—Experiments[J]. International Journal of Solids and Structures, 2007, 44: 1768-1786.
[8] Barsoum I, Faleskog J F. Rupture mechanisms in combined tension and shear—Micromechanics[J]. International Journal of Solids and Structures, 2007, 44: 5481-5498.
[9] Rusinek A, Zaera R. Finite element simulation of steel ring fragmentation under radial expansion [J]. International Journal of Impact Engineering, 2007, 34(4): 799-822.
[10] Zhang H, Ravi-Chandar K. On the dynamics of necking and fragmentation—II.Effect of material properties, geometrical constraints and absolute size[J]. Int J Fract, 2008, 150: 3-36.
[11] 陈磊,周风华,汤铁钢. 韧性金属圆环高速膨胀过程的有限元模拟[J]. 力学学报, 2011, 43(5): 861-870.
CHEN Lei, ZHOU Feng-hua, TANG Tie-gang. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861-870.
[12] 郑宇轩. 韧性材料的动态碎裂特性研究[D]. 中国科技大学, 2013.
ZHENG Yu-xuan. Research on dynamic fragmentation of ductile metals[D]. University of Science and Technology of China, 2013.
[13] 郑宇轩,陈磊,胡时胜,等. 韧性材料冲击拉伸碎裂中的碎片尺寸分布规律[J]. 力学学报, 2013, 45(4): 580-587.
ZHENG Yu-xuan, CHEN Lei, HU Shi-sheng, etal. Characteristics of fragment size distribution of ductile materials fragmentized under high strain rate tension[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 580-587.
[14] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature[C]. Proceedings of the seventh international symposium on ballistics, Netherland. 1983.
[15] 李营. 液舱防爆炸破片侵彻作用机理研究[D]. 武汉理工大学, 2014.
LI Ying. Fragment resistant mechanism research of safety liquid cabin[D]. Wuhan University of Technology, 2014.
[16] 郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨工业大学, 2012.
GUO Zitao. Research on characteristics of projectile water entry and ballistic resistance of targets under different mediums [D]. Harbin Institute of Technology, 2012.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}