舰船管路系统声振控制技术评述与声子晶体减振降噪应用探索

沈惠杰1, 2,李雁飞1, 2,苏永生1, 2,章林柯3,宋玉宝4

振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 163-170.

PDF(1499 KB)
PDF(1499 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 163-170.
论文

舰船管路系统声振控制技术评述与声子晶体减振降噪应用探索

  • 沈惠杰1, 2,李雁飞1, 2,苏永生1, 2,章林柯3,宋玉宝4
作者信息 +

Review of sound and vibration control technologies for ship piping system and exploration of phononic crystals on noise and vibration reduction

  • SHEN Huijie1, 2, LI Yanfei1, 2, SU Yongsheng1, 2, ZHANG Linke3, SONG Yubao4
Author information +
文章历史 +

摘要

舰船管路系统的低频振动和噪声控制问题是当前舰船设计和制造中亟待解决的重难点问题和研究热点。本文浅析了舰船管路系统振动与噪声产生的原因,综述了国内外管路系统减振降噪治理技术,指出当前振动和噪声控制技术中存在的瓶颈问题,结合近年来凝聚态物理领域新兴的声子晶体减振降噪研究,提出利用声子晶体周期结构设计技术解决舰船管路系统的低频减振降噪问题,并对国内外声子晶体理论在管路系统的减振降噪应用探索进行了概述,最后给出将声子晶体引入舰船管路系统低频减振降噪仍需深入研究和探讨的几个方面问题。

Abstract

The problem of low-frequency sound and vibration control for ship piping systems is a knotty and pivot problem that had attracted a great deal of attention in current researches. The causation of sound and vibration of ship piping system is briefly analyzed in this paper. Limits of current sound and vibration control methods are presented after reviewing the noise and vibration reduction technologies of piping systems. Inspired by the researches of the newly developed phononic crystals (PCs) in the condensed matter physics area, a feasible way for solving the sound and vibration control problem is proposed. Such a technology is the introduction of periodic structure into piping system design based on the PCs theory. The exploration applications of PCs on noise and vibration reduction are then reviewed. Finally, several aspects that need further discussion and research are addressed, for better control of sound and vibration for ship piping system via the PCs theory.
 

关键词

舰船管路系统 / 减振降噪 / 低频 / 声子晶体 / 周期结构

Key words

  / pipe system of ships, noise and vibration reduction, low frequency, phononic crystals, periodic structure

引用本文

导出引用
沈惠杰1, 2,李雁飞1, 2,苏永生1, 2,章林柯3,宋玉宝4. 舰船管路系统声振控制技术评述与声子晶体减振降噪应用探索[J]. 振动与冲击, 2017, 36(15): 163-170
SHEN Huijie1, 2, LI Yanfei1, 2, SU Yongsheng1, 2, ZHANG Linke3, SONG Yubao4. Review of sound and vibration control technologies for ship piping system and exploration of phononic crystals on noise and vibration reduction[J]. Journal of Vibration and Shock, 2017, 36(15): 163-170

参考文献

[1] 程广福,张文平,柳贡民,朱卫华. 船舶水管路噪声及其控制研究[J].噪声与振动控制,2004,24(2):31-33.
CHENG Guang-fu, ZHANG Wen-ping, LIU Gong-min, ZHU Wei-hua. The liquid-born noise and its control in water pipelines of ships[J]. Noise and Vibration Control, 2004, 24(2): 31-33.
[2] 刘侍刚. 潜艇高压海水管路流噪声控制与实验研究[D]. 哈尔滨:哈尔滨工程大学,2001.
[3] 沈惠杰. 基于带隙理论的管路系统振动特性研究[D]. 长沙:国防科学技术大学,2009.
[4] 李赫. 可变频充液管道消声器设计与实验研究[D]. 哈尔滨:哈尔滨工程大学,2009.
[5] 何琳.潜艇声隐身技术进展[J].舰船科学技术,2006 (S2):9-17.
He Lin. Development of submarine acoustic stealth technology[J]. Ship Science and Technology, 2006, (S2): 9-17.
[6] 朱石坚,何琳. 舰船水声隐身技术[J]. 噪声与振动控制,2002,(3):17-19.
ZHU Shi-jian, HE Lin. Warships water-borne noise concealment techniques[J]. Noise and Vibration Control, 2004, (3): 17-19.
[7] 俞孟萨,黄国荣,伏同先. 潜艇机械噪声控制技术的现状与发展概述[J]. 船舶力学,2003,(4):110-120.
YU Meng-sa, HUANG Guo-rong, FU Tong-xian. Development Review on Mechanical-Noise Control for Submarine[J]. Journal of Ship Mechanics, 2003, (4): 110-120.
[8] 梁向东. 管路振动噪声对船舶总体声隐身特性的影响[J]. 噪声与振动控制,2010,(6):127-128.
LIANG Xiang-dong. Influence of Pipeline’s Vibration Noise on Acoustic Steal Nature of Ships[J]. Noise and Vibration Control, 2010, (6): 127-128.
[9] 常道庆,蒋国健. 潜艇泵和通海管路流体脉动噪声[J]. 青岛:中科院声学所北站,84-90.
[10] 温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云. 声子晶体[M]. 北京: 国防工业出版社, 2009.
[11] YONG Xiao, WEN Jihong, WEN Xisen. Longitudinal wave band gaps in metamaterialbased elastic rods containing multi-degree-of-freedom resonators, New Journal of Physics, 2012, 14, 033042.
[12]戴安东,陈刚,朱石坚. 舰船管路振动噪声控制措施综述[J]. 2001年船舶与海洋工程研究专集,2001 (143): 75-77.
[13]王艳林,王自东,宋卓斐,王强松. 潜艇管路系统振动噪声控制技术的现状与发展[J]. 舰船科学技术. 2008, 30(6): 34-38.
WANG Yan-lin,WANG Zi-dong,SONG Zhuo-fei,WANG Qiang-son. Review of vibration and noise control technology in piping system for submarines[J]. Ship Science and Technology, 2008, 30(6): 34-38.
[14] 李超华,张吉辉. 离心泵出口管路设置对泵噪振的影响,锅炉与管道安装,2008, (6): 26-28.
[15] 尹志勇,钟荣,刘忠族. 管路系统振动噪声控制技术研究现状与展望[J]. 舰船科学技术,2006,(S2):23-29.
YIN Zhi-yong, ZHONG Rong, LIU Zhong-zu. Current situation and trends on the study of noise and vibra tion control technology in pipeline systems[J]. Ship Science and Technolgoy, 2006, (S2): 23-29.
[16] 朱显明. 管道系统振动能量流的理论与测量技术研究[D]. 武汉:华中科技大学,2000.
[17] Kerstin Avila, David Moxey, Alberto de Lozar, Marc Avila, Dwight Barkley, Björn Hof. The Onset of Turbulence in Pipe Flow[J]. Science, 2011, 333: 192-196.
[18] 陈刚,朱石坚. 挠性胶管的阻尼减振机理初探[J]. 噪声与振动控制,2002,(06):9-13.
CHEN Gang , ZHU Shi-Jian. Investigation on Energy Dissipation Mechanism of Viscoelastic Pipe[J]. Noise and Vibration Control, 2002, (06): 9-13.
[19] 蒋学武,朱石坚. 舰船管路橡胶减振器的应用[J]. 海军工程大学学报,2000,(04):90 -91.
JIANG Xue-wu , ZHU Shi-jian. The application of pipe rubber vibration isolators on warships[J]. Journal of Naval University of Engineering, 2000, (04): 90 -91.
[20] 王育平,张丹才,余永丰. 通海系统管路阻尼处理降噪技术研究[J]. 噪声与振动控制,2010,30(4):40-43.
WANG Yu-ping,ZHANG Dan-cai,YU Yong-feng. Research on Damping Material Used in Sea Pipeline Systems[J]. Noise and Vibration Control, 2010, 30(4): 40-43.
[21] 陈刚,朱石坚.管壁不连续对管路结构振动传递的影响[J].海军工程大学学报,2004 16(2) 40-43.
[22] 朱石坚,陈刚.管壁不连续对管路中传播的弯曲波的隔离[J]. 船舶力学,2006 10(5) 142-149.
[23] 薛扬.复合材料宽带动力吸振器的设计和应用[D],西安:西北工业大学,2007.[24] 钱德进,缪旭弘,贾地. 阻振质量在出海管路减振降噪中的应用,声学技术,2010, (29): 632-636.
QIAN De-jin,MIAO Xu-hong,JIA Di. Application of vibration isolation mass in noise reduction ot sea-water pipe[J]. Technical Acoustics, 2010, (29): 632-636.
[25] 吴石. 海水管路系统流噪声测量方法及特性研究[D]. 哈尔滨:哈尔滨工程大学,2003.
[26] 刘文彬. 水管路系统阀门流固耦合振动噪声特性研究[D]. 哈尔滨:哈尔滨工程大学,2011.
[27] 冯志鹏,张毅雄,臧峰刚,叶献辉. 三维弹性管的涡致振动特性分析[J]. 应用数学和力学. 2013,34(9):976-985.
FENG Zhi-peng, ZHANG Yi-xiong, ZANG Feng-gang, YE Xian-hui. Analysis of vortex-induced vibration characteristics for a three dimensional flexible tube[J]. Applied Mathematics and Mechanics, 2013, 34(9): 976-985.
[28] 郭涛,张涛,赵威. 基于LES的直管流致振动分析[J]. 工程力学,2012,29(10):340-346.
GUO Tao, ZHANG Tao, ZHAO Wei. Flow-induced vbration analysis of straight pipe based on LES[J]. Engineering Mechanics, 2012, 29(10): 340-346.
[29] 李东升,薛晖,高岩. 慢波速旁路管水动力噪声消声器降噪特性研究[J]. 中国造船,2010, (3): 92-99.
LI Dong-sheng, XUE Hui, GAO Yan. Noise reduction characteristic of hydrodynamic silencer with low sound wave speed by-pass branches[J]. Ship Building of China, 2010, (3): 92-99.
[30] Min-Chie Chiu. Numerical assessment for abroad band and tuned noise using hybrid mufflers and a simulated annealing method. Journal of Sound and Vibration, 2013, (332): 2923-2940.
[31] OH Seungjae, WANG Semyung, CHO Sungman. Development of energy efficiency design map based on acoustic resonance frequency of suction muffler in compressor. Applied Energy, 2015, (150): 233-244.
[32] KUO S M, MORGAN D R. Active Noise Control Systems-Algorithms and DSP Implementation[M]. New York : Wiley, 1996.
[33] 温激鸿,郁殿龙,赵宏刚,蔡力,肖勇,王刚,尹剑飞.人工周期结构中弹性波的传播——振动与声学特性[M]. 北京:科学技术出版,2015.
[34] RUZZENE M, BAZ A. Finite element modeling of vibration and sound radiation from fluid-loaded damped shells[J]. Thin-Walled Structures, 2000, (36): 21-46.
[35] SOROKIN S V, ERSHOVA O A. Analysis of the energy transmission in compound cylindrical shells with and without internal heavy fluid loading by boundary integral equations and by Floquet theory[J]. Journal of Sound and Vibration, 2006, (291): 81-99.
[36] Søe-Knudsen A, SOROKIN S V. Modelling of linear wave propagation in spatial fluid filled pipe systems consisting of elastic curved and straight elements. Journal of Sound and Vibration, 2010, (329): 5116-5146.
[37] SHEN H J, WEN J H, YU D L, WEN X S. The vibrational properties of a periodic composite pipe in 3D space. Journal of Sound and Vibration, 2009, 328(1-2): 57-70.
[38] SHEN H J, WEN J H, YU D L, WEN X S. Control of flexural vibration in a periodic pipe conveying fluid based on a Bragg scattering mechanism coupled with a locally resonant mechanism. The 2011 IEEE International Conference on Mechatronics and Automation, Beijing, 1700-1705, 2011. [39] YU Dianlong, WEN Jihong, ZHAO Honggang, LIU Yaozong, WEN Xise. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid[J]. 2008, (318): 193-205.
[40] RUZZENE M, BAZ A. Response of periodically stiffened shells to a moving projectile propelled by an internal pressure wave. Mechanics of Advanced Materials and Structures, 2006, 13: 267-284.
[41] 刘江伟,郁殿龙,温激鸿,沈惠杰,张亚峰. 周期附加质量充液管路减振特性研究[J]. 振动与冲击, 2016, 35(6): 141-145.
LIU Jiang-wei, YU Dian-long, WEN Ji-hong, SHEN Hui-jie, ZHANG Ya-feng. Vibration reduction of pipes conveying fluid with periodically added mass[J]. Journal of Vibration and Shock, 2016, 35(6): 141-145.
[42] G.H.Koo, Y.S.Park. Vibration reduction by using periodic supports in a piping system, Journal of Sound and Vibration. 1998, 210(1): 53-68.
[43] 沈惠杰,温激鸿,郁殿龙,温熙森.基于Timoshenko 梁模型的周期充液管路弯曲振动带隙特性和传输特性.物理学报.2009,58(12):8357-8363.
[44] KUSHWAHA M S, AKJOUJ A, DJAFARI-Rouhani B, DOBRZYNSKI L, VASSEUR J O. Acoustic spectral gaps and discrete transmission in slender tubes[J]. Solid State Communications, 1998, 106(10): 659–663.
[45] PAIDOUSSIS M P. High-pass acoustic filters for hydraulic loops[J]. Journal of Sound and Vibration, 1971, 14(4): 4 33-437.
[46] FANG N, XI D, XU J, AMBATI M, STRITURAVANICH W, SUN C, ZHANG X. Ultrasonic metamaterials with negative modulus[J]. Nature Materials, 2006, (5): 452-456.
[47] ZHI Guo Wang, SAM Hyeon Lee, CHUL Koo Kim, CHOON Mahn Park, KYUN Nahm, NIKITOV S A. Acoustic wave propagation in one-dimensional phononic crystals containing Helmholtz resonators[J]. Journal of Applied Physics, 2008, (103): 064907.
[48] BOUDOUTI E H El, MRABTI T, AL-Wahsh H, DJAFARI-Rouhani B, AKJOUJ A, DOBRZYNSKI L. Transmission gaps and Fano resonances in an acoustic waveguide: analytical model[J]. Journal of Physics: Condensed Matter, 2008, (20): 255212.
[49] LEE S H, PARK C M, SEO Y M, WANG Z G, KIM C K. Negative Effective Density in An Acoustic Metamaterial[J]. arXiv 0812.2954v3 [cond-mat-mtrl-sci], 2009.
[50] LEE Sam Hyeon, PARK Choon Mahn, SEO Yong Mun, WANG Zhi Guo, KIM Chul Koo. Composite acoustic medium with simultaneously negative density and modulus[J]. Physical Review Letters, 2010, (104): 054301.
[51] LI Y F, SHEN H J, ZHANG L K, SU Y S, YU D L. Control of low-frequency noise for piping systems via the design of coupled gap of acoustic metamaterials, Physics Letters A, 2016, doi: 10.1016/j.physleta.2016.05.017.

PDF(1499 KB)

537

Accesses

0

Citation

Detail

段落导航
相关文章

/