复杂移动轮胎力作用下沥青路面粘弹性力学行为模拟研究

王扬1,王丽娟2,路永婕2,司春棣2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 181-186.

PDF(2177 KB)
PDF(2177 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 181-186.
论文

复杂移动轮胎力作用下沥青路面粘弹性力学行为模拟研究

  • 王扬1,王丽娟2,路永婕2,司春棣2
作者信息 +

Simulation on viscoelastic behavior of asphalt pavement under complex moving wheel load

  •   WANG Yang1,  WANG Li-juan2,   LU Yong-jie2,  SI Chun-di2
Author information +
文章历史 +

摘要

对复杂移动轮胎力作用下的沥青路面粘弹性有限元建模进行了分析与探讨,在此基础上对路面的粘弹性力学行为进行了仿真,并分析了轮组形式和轴组形式对路面响应的影响。研究表明,在移动轮胎力作用下的路面有限元模型中,沥青混合料的蠕变法则宜采用应变硬化率关系式;在轮胎力反复作用下,路面内部的应力分布趋于均匀,中面层承受较大的Tresca应力;在轮胎工作状态相同的条件下,单轮组对路面永久变形的贡献与双轮组同等重要,双轴组对路面的破坏效应比单轴组更加显著。

Abstract

A finite element model of pavement under the complex moving wheel load was established in this study. Subsequently, viscoelastic behavior simulation of pavement had been conducted, and the influence of wheel set and axle set on pavement response had been analyzed. Results indicate that the strain-hardening formulation is more suitable for the creep rule of asphalt mixture in the proposed model. Under the repeated action of moving wheel load, the distribution of stress in the pavement tends to be uniform, and the intermediate pavement layer is subjected to a large Tresca stress. Under the same tire operating condition, the single-wheel set makes the same contribution to the permanent deformation of pavement with the dual-wheel set, and the damage effect of daul-axle set on pavement is more significant than that of single-axle set.
 

关键词

沥青路面 / 粘弹性力学行为 / 复杂移动轮胎力 / 有限元分析

Key words

 asphalt pavement / viscoelastic behavior / complex moving wheel load / finite element analysis

引用本文

导出引用
王扬1,王丽娟2,路永婕2,司春棣2. 复杂移动轮胎力作用下沥青路面粘弹性力学行为模拟研究[J]. 振动与冲击, 2017, 36(15): 181-186
WANG Yang1, WANG Li-juan2, LU Yong-jie2, SI Chun-di2. Simulation on viscoelastic behavior of asphalt pavement under complex moving wheel load[J]. Journal of Vibration and Shock, 2017, 36(15): 181-186

参考文献

[1] 裴建中, 吴浩, 陈勇, 等. 多轴移动荷载下沥青路面的动态响应特性[J]. 中国公路学报, 2011, 24(5): 26-31.
PEI Jian-zhong, WU Hao, CHEN Yong, et al. Dynamic response characteristics of asphalt pavement under multi-axle moving load [J]. China Journal of Highway and Transport, 2011, 24(5): 26-31.
[2] YANG S P, CHEN L Q, LI S H. Dynamics of Vehicle Road Coupled System [M], Springer-Verlag, Berlin, 2015.
[3] AL-QADI I L, Wang H. Prediction of tire pavement contact stresses and analysis of asphalt pavement responses: A decoupled approach [J]. Journal of the Association of Asphalt Paving Technologists, 2011, 80: 289-316.
[4] WANG Hao, Al-Qadi I L. Importance of nonlinear anisotropic modeling of granular base for predicting maximum viscoelastic pavement responses [J]. Journal of Engineering Mechanics,  2013, 139(1) : 29-38.
[5] 董泽蛟, 谭忆秋, 欧进萍. 三向非均布移动荷载作用下沥青路面动力响应分析[J]. 土木工程学报, 2013, 46(6): 122-130.
DONG Ze-jiao, TAN Yi-qiu, OU Jin-ping. Dynamic response analysis of asphalt pavement under three-directional nonuniform moving load [J]. China Civil Engineering Journal. 2013, 46(6): 122-130.
[6] HU X,Walubita L F. Modeling mechanistic responses in asphalt pavements under three-dimensional tire-pavement contact pressure [J]. Journal of Central South University of Technology, 2011, 18(1): 250-258.
[7] WOLLNY I, Behnke R, Villaret K, et al. Numerical modelling of tyre–pavement interaction phenomena: coupled structural investigations [J]. Road Materials and Pavement Design, 2016, 17(3): 563-578.
[8] XIA K, Yang Y. Three-dimensional finite element modeling of tire/ground interaction [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36(4): 498-516.
[9] WANG Y, Lu Y J, Si C D, et al. Tire-pavement coupling dynamic simulation under tire high-speed-rolling condition[J]. International Journal of Simulation Modelling, 2016, 15(2): 236-248
[10] ZHU H, Sun L. Mechanistic Rutting prediction using a two-stage viscoelastic-viscoplastic damage constitutive model of asphalt mixtures [J]. Journal of Engineering Mechanics, 2013, 139(11): 1577-1591.
[11] ZOPF C, Garcia M A, Kaliske M.  A continuum mechanical approach to model asphalt [J]. International Journal of Pavement Engineering . 2015, 16(2):  105-124.
[12] PERL M, Uzan J, Sides A.. Visco-elasto-plastic constitutive law for a bituminous mixture under repeated loading [C]// McLaughlin M. Asphalt Materials, Mixtures, Construction, Moisture Effects and Sulfur. Washington, D. C.: Transportation Research Board, National Research Council, National Academy of Sciences, 1983. 20-27.
[13] GB 1589-2004. 道路车辆外廓尺寸、轴荷及质量限值[S].北京: 中国标准出版社, 2004.
GB 1589-2004. Limits of Dimensions, Axle Load and Masses for Road Vehicles [S].Beijing: China Standard Press, 2004.
[14] JTG D50-2017. 公路沥青路面设计规范[S]. 北京: 人民交通出版社, 2017.
JTG D50-2017.  Specifications for Design of Highway Asphalt Pavement [S]. Beijing: China Communications Press, 2017.
[15] CJJ 169-2011. 城镇道路路面设计规范[S]. 北京:中国建筑工业出版社, 2011.
CJJ 169-2011. Code for pavement design of urban road[S]. Beijing: China Architecture & Building Press, 2011.
[16] 王扬. 复杂轮胎力作用下沥青路面力学行为研究[D]. 北京:北京交通大学, 2017.
WANG Y. Study on Mechanical Behaviors of Asphalt Pavement under Complicated Tire Force [D]. Beijing: Beijing Jiaotong University, 2017.

PDF(2177 KB)

445

Accesses

0

Citation

Detail

段落导航
相关文章

/