含弱约束受限空间油气爆炸外部特性研究

王世茂1,杜扬 1,李国庆1,齐圣1,李阳超1,徐长航2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 253-258.

PDF(1245 KB)
PDF(1245 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 253-258.
论文

含弱约束受限空间油气爆炸外部特性研究

  • 王世茂1,杜扬 1,李国庆1,齐圣1,李阳超1,徐长航2
作者信息 +

Experimental study on the characteristics of fuel-air mixture explosion outside the confined space including weak constraint face

  • Wang Shimao1,Du Yang1, Li Guoqing1,Qi Sheng1, Li Yangchao1,Xu Changhang2
Author information +
文章历史 +

摘要

构建了含弱约束面的受限空间油气爆炸模拟实验系统,对含有弱约束的受限空间油气爆炸外部特性进行了实验研究。实验获得了容器外部不同位置处爆炸超压随时间的变化规律,同时利用高速摄影系统记录了爆炸火焰发展变化过程。研究结果表明:1、竖直方向和水平方向爆炸压力随时间变化规律均为“破膜&泄流正超压→最大负超压→外部爆燃正超压→二次负超压”,竖直方向上最大爆炸压力要略大于水平方向上的最大爆炸压力。2、随着油气浓度的增加,爆炸超压先增大后减小,在初始油气浓度为1.79%时爆炸超压达到最大值。3、随着比例距离的增大,外部爆炸超压呈负指数规律递减。4、火焰形态变化过程可分为“喷射引燃阶段→卷曲变形阶段→蘑菇云状火焰阶段→衰弱熄灭阶段”,火焰最大高度为0.85m,最大直径为0.6m

Abstract

The experiment system of the confined space with weak constraint face is established, and the  characteristics of fuel-air mixture explosion outside the space is studied through the experiment. The relationship curves of explosion overpressure and time on different locations outside the vessel were obtained, and the flame development process was caught. The result shows that:1. The characteristics of the extern overpressure is “brust&fv overpressure→maximum negative pressure→external explosion overpressure→secondary negative overpressure”, and overpressure values along the vertical direction are higher than the overpressure values along the horizontal direction. 2. With the increase of oil gas concentration, the explosion overpressure increases first and then decreases, and the maximum value of the explosion overpressure is obtained at the initial oil concentration of 1.79%. 3. The external explosion overpressure has a negative exponential law with the increase of proportional distance. 4. The morphological change process of flame can be divided into "pilot injection stage→ crimping and deforming stage→mushroom shaped stage→extinction stage". The maximum flame height is 0.85m and the maximum diameter is 0.6m.
 

关键词

油气 / 受限空间 / 弱约束 / 外部爆炸特性 / 超压 / 火焰

Key words

fuel-air mixture / confined space / weak constraint / external explosion characteristics / overpressure / flame

引用本文

导出引用
王世茂1,杜扬 1,李国庆1,齐圣1,李阳超1,徐长航2. 含弱约束受限空间油气爆炸外部特性研究[J]. 振动与冲击, 2017, 36(15): 253-258
Wang Shimao1,Du Yang1, Li Guoqing1,Qi Sheng1, Li Yangchao1,Xu Changhang2. Experimental study on the characteristics of fuel-air mixture explosion outside the confined space including weak constraint face[J]. Journal of Vibration and Shock, 2017, 36(15): 253-258

参考文献

 [1] 欧益宏, 杜扬, 蒋新生, 等. 热源条件下油气二次热着火实验[J]. 爆炸与冲击, 2011,31(5):510-515.
 Ou Yihong,Du Yang,Jiang Xinsheng,et al. Secondary thermal ignition of gasoline-air mixture induced by hot source[J].Explosion and Shock Waves,2011,31(5):510-515.
[2] Movileanu C, Gosa V, Razus D. Explosion of gaseous ethylene–air mixtures in closed cylindrical vessels with central ignition[J]. Journal of Hazardous Materials, 2012,235–236(0):108-115.
 [3] Cui Y, Wang Z, Jiang J, et al. Size Effect on Explosion Intensity of Methane-air Mixture in Spherical Vessels and Pipes[J]. Procedia Engineering, 2012,45(0):483-488.
 [4] Tang C, Zhang S, Si Z, et al. High methane natural gas/air explosion characteristics in confined vessel[J]. Journal of Hazardous Materials, 2014,278(0):520-528.
 [5] 杨书召, 景国勋. 受限空间瓦斯爆炸火焰与毒气传播研究[J]. 河南理工大学学报(自然科学版), 2014,33(3):257-260, 275.
 Yang Shuzhao,Jing Guoxun.Study on spread of flame and noxious gas of gas explosion in confined spaces[J].Journal of Henan Polytechnic University(Natural Science).2014,33(3):257-260,275.
 [6] 程浩力, 李睿, 刘德俊. 管道燃气爆炸特性实验研究[J]. 中国安全生产科学技术, 2010,06(4):23-27.
 Cheng Haoli,Li Rui,Liu Dejun.Experimental study on the explosion characteristic of combustible gas in pipelines[J].Journal of Safety Science and Technology,2010,06(4):23-27.
 [7] Zhang Q, Pang L, Liang H M. Effect of scale on the explosion of methane in air and its shockwave[J]. Journal of Loss Prevention in the Process Industries, 2011,24(1):43-48.
 [8] Emami S D, Rajabi M, Che Hassan C R, et al. Experimental study on premixed hydrogen/air and hydrogen–methane/air mixtures explosion in 90 degree bend pipeline[J]. International Journal of Hydrogen Energy, 2013,38(32):14115-14120.
 [9] Na Inna A M, Phylaktou H N, Andrews G E. Effects of Obstacle Separation Distance on Gas Explosions: The Influence of Obstacle Blockage Ratio[J]. Procedia Engineering, 2014,84(0):306-319.
[10] 刘谦, 林柏泉, 朱传杰, 等. 管道长度对爆炸波前流速与超压耦合关系影响研究[J].采矿与安全工程学报, 2014(3):476-482.
 Li Qian,Lin Boquan,Zhu Chuanjie,et al.Influence of pipe length on coupled relation between flow velocity of detonation front and overpressure[J].Journal of Mining and Safety Engineering,2014(3):476-482.
[11] Zhao Z, Zhenyuan J, Haizhu L. Characteristics of gas explosion flow fields in complex pipelines[J]. International Journal of Mining Science and Technology, 2015,25(1):157-164.
[12] 姜孝海. 泄爆外流场的动力学机理研究[D]. 南京理工大学工程力学系, 2004.
[13] Kasmani R M, Andrews G E, Phylaktou H N. Experimental study on vented gas explosion in a cylindrical vessel with a vent duct[J]. Process Safety and Environmental Protection, 2013,91(4):245-252.
[14] Tomlin G, Johnson D M, Cronin P, et al. The effect of vent size and congestion in large-scale vented natural
gas/air explosions[J]. Journal of Loss Prevention in the Process Industries, 2015,35(0):169-181.
[15] Lee H G, Kim J. Numerical simulation of the three-dimensional Rayleigh–Taylor instability[J]. Computers &
Mathematics with Applications, 2013,66(8):1466-1474.

PDF(1245 KB)

445

Accesses

0

Citation

Detail

段落导航
相关文章

/