超声辅助微挤压成形系统设计

彭卓1 韩光超1,2,3 李凯1 陈昊1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 259-264.

PDF(1549 KB)
PDF(1549 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 259-264.
论文

超声辅助微挤压成形系统设计

  • 彭卓1   韩光超1,2,3  李凯1  陈昊1
作者信息 +

Design of ultrasonic-assisted micro extrusion forming system

  • PEN Zhuo 1,  HAN Guangchao 1,2,3 , LI Kai 1, CHEN Hao1
Author information +
文章历史 +

摘要

针对微型零部件的超声微挤压成形过程,对的振动特性进行仿真优化设计,研制可实现工件辅助超声振动的超声微挤压成形系统。在对矩形六面体竖直超声振动模态进行仿真分析的基础上,通过矩形六面体的结构参数优化并设置一定数量的圆柱形内孔,使得超声变幅器辐射面可实现均匀的竖直方向超声振幅输出,并采用双换能器和双变幅杆驱动形式实现整体超声振动系统的支撑和振动能量的输入。实验结果表明,所研制的超声辅助微挤压成形系统可负载微成形工件及模具实现竖直方向的整体超声谐振,并能满足工件超声振动辅助微挤压成形加工的需求。

Abstract

For the ultrasonic-assisted micro extrusion process of micro parts, the ultrasonic micro extrusion forming system was developed to realize the ultrasonic-assisted vibration of workpiece. And the numerical simulation analysis method was used to optimize the vibration characteristics of rectangular hexahedron sonotrode. Basing on the ultrasonic vibration mode of rectangular hexahedron which could implement vertical vibration modal, the resonant surface of sonotrode was made to realize uniform vertical output of ultrasonic amplitude after having been made structure optimization and set up with a certain number of cylindrical holes inside. Double transducers and double stepped horns were designed to support the whole ultrasonic vibration system and apply input of ultrasonic vibration energy. Experimental results show that the micro ultrasonic assisted extrusion forming system can load micro forming workpiece and die with vertical ultrasonic resonant vibration. It can also satisfy the requirement of micro extrusion forming process with ultrasonic vibration of workpiece.
 

关键词

微挤压 / 工件超声振动 / 超声变幅器 / 振动特性 / 仿真分析

Key words

micro extrusion / ultrasonic vibration of workpiece / sonotrode / vibration characteristics / simulated analysis

引用本文

导出引用
彭卓1 韩光超1,2,3 李凯1 陈昊1. 超声辅助微挤压成形系统设计[J]. 振动与冲击, 2017, 36(15): 259-264
PEN Zhuo 1, HAN Guangchao 1,2,3,LI Kai 1, CHEN Hao1. Design of ultrasonic-assisted micro extrusion forming system[J]. Journal of Vibration and Shock, 2017, 36(15): 259-264

参考文献

[1]. 单德彬, 袁林, 郭斌. 精密微塑性成形技术的现状和发展趋势[J]. 塑性工程学报, 2008, 15(2): 46-53
SHAN De-bin, YUAN Lin, GUO Bin. Research situation and development trends in micro forming [J]. JOU RNAL OF PLASTICITY ENGINEERING, 2008, 15(2): 46-53
[2]. 王春举, 郭斌,单德彬, 等. 高频/超声振动辅助微成形技术研究进展与展望[J]. 精密成形工程, 2015, 6(3): 7-16.
WANG Chun-ju,GUO Bin,SHAN De-bin,et al. Research Progress and Outlook of High-frequency /ultrasonic Vibration Assisted Microforming[J]. JOURNAL OF NETSHAPE FORMING ENGINEERING, 2015, 6(3): 7-16.
[3]. Cristina Bunget, Gracious Ngaile. Influence of ultrasonic vibration on micro-extrusion [J]. Ultrasonics, 2011(51): 606-616.
[4]. YAO Z H,KIM G Y,FAIDLEY L A, et al. Effects of Superimposed High-Frequency Vibration on Deformation of Aluminum in Micro/Meso-Scale Upsetting [J].Journal of Materials Processing Technology, 2012(212): 640-646.
[5]. WITTHAUER A T, KIM G Y, FAIDLEY LE, et al. Effects of Acoustic Softening and Hardening in High-Frequency Vibration-Assisted Punching of Aluminum [J]. Materials and Manufacturing Processes, 2014(29): 1184-1189.
[6]. 张博. 超声振动辅助紫铜箔板塑性变形行为与微冲裁机理研究[D]. 哈尔滨:哈尔滨工业大学图书馆, 2014.
Zhang Bo. Investigation on ultrasonic vibration assisted plastic deformation behaviours and micro-blanking mechanism using pure copper foil [D]. Harbin: Library of Harbin Institute of Technology, 2014.
[7]. BAI Y, YANG M. Investigation on Mechanism of Metal Foil Surface Finishing with Vibration-Assisted Micro-Forging [J]. Journal of Materials Processing Technology, 2013(213): 330-336.
[8]. HUNG J C, LIN C C. Investigations on the Material Property Changes of Ultrasonic-Vibration Assisted Aluminum Alloy Upsetting [J]. Materials & Design, 2013(45): 412-420.
[9]. HUANG Y M, WU Y S, HUANG J Y. The Influence of Ultrasonic Vibration-Assisted    Micro-Deep Drawing Process [J]. International Journal of Advanced Manufacture Technology, 2014(71): 1455-1461.
[10]. ZHUANG Xin-cun, WANG Jia-peng, ZHENG Huan, et al. Forming mechanism of ultrasonic vibration assisted compression[J].Science Direct, 2015(25): 2352-2360.
[11]. LUO Feng, Li Kai-hui, ZHONG Jin-ming, et al. An ultrasonic microforming process for thin sheet metals and its replication abilities [J]. Journal of Materials Processing Technology, 2015(216):10-18.
[12]. Bahman Azarhoushang, Taghi Tawakoli. Development of a novel ultrasonic unit for grinding of ceramic matrix composites[J], International Journal of Advanced Manufacture Technology, 2011(57): 945-955
[13]. 韩光超, 孙莹, 孙明, 等. 多孔矩形六面体超声变幅器设计与仿真分析 [J]. 振动与冲击,2014, 33(19): 211-217.
HAN Guang-chao, SUN Ying, SUN Ming, et al. Design and simulation for a porous rectangular block ultrasonic horn [J]. JOURNAL OF VIBRATION AND SHOCK, 2014, 33(19): 211-217.
[14]. 林书玉, 张福成, 郭孝武. 超声频矩形六面体的三维耦合振动 [J]. 声学学报, 1991, 16(2): 91-97
LIN Shuyu,  ZHANG Fucheng, GUO Xiaowu. Three dimensional coupled vibration of block-like resonators [J]. ACTA ACUSTICA, 1991, 16(2): 91-97
[15]. 周光平, 梁明军, 王家宣. 大尺寸超声振动体的研究 [J]. 声学技术, 2004, 23(3): 183-188
ZHOU Guang-ping, LIANG Ming-jun, WANG Jia-xuan. Study on large sized ultrasonic vibrators [J]. Technical Acoustics, 2004, 23(3): 183-188
[16]. Li Kai, Han Guang-chao, Pan Gao-feng, et al. Research on vibration characteristics of porous rectangular hexahedron sonotrode [C]// IEEE 2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA), Jinan: IEEE Press, 2015, 367-371
[17]. 韩光超, 李凯, 王新云, 等. 一种双换能器驱动超声振动平台[P]. 中国, 实用新型专利, ZL 2015 2 0071898.1, 2015.07.08.
Han Guangchao, Li Kai, Wang Xinyun, et al. An ultrasonic vibration platform driving by two ultrasonic transducers [P]. China, Utility model patent, ZL 2015 2 0071898.1, 2015.07.08.

PDF(1549 KB)

Accesses

Citation

Detail

段落导航
相关文章

/