基于磁流变弹性体的推进轴系半主动式吸振器研究

卢坤1,刘翎1,杨志荣2,龚兴龙3,饶柱石1,解忠良1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 36-42.

PDF(1816 KB)
PDF(1816 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 36-42.
论文

基于磁流变弹性体的推进轴系半主动式吸振器研究

  • 卢坤1,刘翎1,杨志荣2,龚兴龙3,饶柱石1,解忠良1
作者信息 +

Studyonsemi-active dynamic vibration absorber of ship propulsion shafting based on magnetorheological elastomer

  • Kun Lu1 ,Ling Liu1,Zhirong Yang2, Zhushi Rao1,Xinglong Gong3,Zhongliang Xie1
Author information +
文章历史 +

摘要

根据船舶推进轴系纵振动力学特性,针对动力吸振器的减振机理进行研究,并对半主动式吸振器的设计参数影响规律进行理论分析。基于磁流变弹性体的剪切模量可由外加磁场控制的特性,设计了一种剪切刚度可调的半主动式吸振器,对其移频特性进行了试验测试,并在1:4的船舶轴系缩比模型上进行了变转速工况下吸振效果试验。实验结果表明,该吸振器具有12.3HZ的移频范围,移频特性曲线线性度良好;并且在不同转速下相比被动式吸振器均有更好的吸振效果,进一步验证了利用磁流变弹性体设计推进轴系半主动式吸振器的可行性。

Abstract

According to the dynamic characteristics of marine propulsion shafting, the vibration absorbing mechanism of dynamic vibration absorber wasstudied.And the dependence of semi-active dynamic vibration absorbers’ parameters on vibration absorptioneffect was analysed. Magneto-rheological elastomer (MRE) is a kind of smart materials,whose shear modulus could be controlled by external magnetic field. Based on thisproperty, a semi-active dynamic vibration absorber with adjustable stiffness was proposed.Its natural frequency-shift performance was tested. Furthermore,an experimental research on a model ship with scaled ratio 1:4was carried out to verify itsvibration absorption capacity.The results show that the designed MREs-SDVA with a frequency range of 12.3Hzperforms better than classic passive dynamic vibration absorbers under different rotating speeds. And the linearity of the frequency shift characteristic curve is excellent.The feasibility of using the MREs to design the semi-active vibration absorbers is further verified.
 

关键词

磁流变弹性体 / 推进轴系纵振控制 / 半主动吸振器 / 移频特性

引用本文

导出引用
卢坤1,刘翎1,杨志荣2,龚兴龙3,饶柱石1,解忠良1. 基于磁流变弹性体的推进轴系半主动式吸振器研究[J]. 振动与冲击, 2017, 36(15): 36-42
Kun Lu1,Ling Liu1,Zhirong Yang2, Zhushi Rao1,Xinglong Gong3,Zhongliang Xie1. Studyonsemi-active dynamic vibration absorber of ship propulsion shafting based on magnetorheological elastomer[J]. Journal of Vibration and Shock, 2017, 36(15): 36-42

参考文献

[1] 谢基榕, 沈顺根, 吴有生. 推进器激励的艇体辐射噪声及控制技术研究现状 [J]. 中国造船, 2010, 51(4): 234-41.
XIE Ji-rong,SHEN Shun-gen,WU You-sheng.Research status  on noise radiation from vibration hull induced by propeller and reduction measures [J]. Shipbuilding of China,2010, 51(4): 234-41.
[2] 赵耀, 张赣波, 李良伟. 船舶推进轴系纵向振动及其控制技术研究进展 [J]. 中国造船, 2011, 52(4): 259-69.
ZHAO Yao,ZHANG Gan-bo,LI Liang-wei. Review of Advances on Longitudinal Vibration of Ship PropulsionShafting and Its
Control Technology [J]. Shipbuilding of China, 2011, 52(4):259-69.
[3] LEE E, NIAN C, TARNG Y. Design of a dynamic vibration absorber against vibrations in turning operations [J]. Journal of Materials Processing Technology, 2001, 108(3): 278-85.
[4] LIU K, LIU J. The damped dynamic vibration absorbers: revisited and new result [J]. Journal of Sound and Vibration, 2005, 284(3): 1181-9.
[5] DAVIS C L, LESIEUTRE G A. An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness [J]. Journal of sound and vibration, 2000, 232(3): 601-17.
[6] 李剑锋, 龚兴龙, 张先舟, et al. 主动移频式动力吸振器及其动力特性的研究 [J]. 实验力学, 2005, 20(4): 507-14.
LI Jian-feng,GONG Xing-long,ZHANG Xian-zhou, et al. Study of Adaptive Tuned Vibration Absorberand Its Dynamic Properties [J], Journal of ExperimentalMechanics, 2005, 20(4): 507-14.
[7] 徐振邦, 龚兴龙, 陈现敏. 机械式频率可调动力吸振器及其减振特性[J]. 振动与冲击, 2010, 29(2): 1-6.
XU Zhen-bang,GONG Xing-long,CHEN Xian-min. Mechanical vibration absorber with tunable resonantfrequency and its vibration attenuation characteristics [J]. Journal of Vibration and Shock, 2010, 29(2): 1-6.
[8] 高强, 房祥波, 赵艳青, et al.变质量动力吸振器及其减振性能 [J]. 长安大学学报(自然科学版), 2013, 05): 109-12.
GAO Qiang, FANG Xiang-bo, ZHAO Yan-qing, et al. Variablemass dynamicvibrationabsorberand its performanceofvibrationreduction [J].Journal of Chang’an University(Natural Science), 2013, 05): 109-12.
[9] 汪建晓, 孟光. 磁流变液阻尼器用于振动控制的理论及实验研究 [J]. 振动与冲击, 2001, 20(2): 39-45.
Wang Jian-xiao, MengGuang.Theoretical and experimental study on the vibration controlby magneto-rheological fluid dampers[J].Journal of Vibration and Shock, 2001, 20(2): 39-45.
[10] 胡杰, 牛红攀, 张希农, et al. 具有粘弹性电磁式主动动力吸振器主动控制试验研究 [J]. 实验力学, 2007, 21(6): 735-41.
HU Jie, NIU Hong-pan, ZHANG Xi-nong, et al.The Experimental Study on Vibration Control of ViscoelasticityElectromagnetic Active Dynamic Absorber [J].Journal of ExperimentalMechanics, 2007, 21(6): 735-41.
[11] MOHEIMANI S R. A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers [J]. Control Systems Technology, IEEE Transactions on, 2003, 11(4): 482-94.
[12] WILLIAMS K, CHIU G-C, BERNHARD R. Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber [J]. Journal of Sound and Vibration, 2005, 280(1): 211-34.
[13] 龚兴龙, 邓华夏, 李剑锋, et al. 磁流变弹性体及其半主动吸振技术 [J]. 中国科学技术大学学报, 2008, 37(10): 1192-203.
GONG Xing-long,DENG Hua-xia,LI Jian-feng, et al.Magnetor- heological elastomers and correspondingsemi-active vibration absorption technology [J].Journal of University of Science and Technology of China,2008, 37(10): 1192-203.
[14] POPP K M, KR GER M, HUA LI W, et al. MRE properties under shear and squeeze modes and applications [J]. Journal of Intelligent Material Systems and Structures, 2010, 21(15): 1471-7.
[15] LI W, ZHOU Y, TIAN T. Viscoelastic properties of MR elastomers under harmonic loading [J]. Rheologica acta, 2010, 49(7): 733-40.
[16] XU Z,GONG X,LIAO G,et al. An active-damping-compensated magnetorheological elastomer adaptive tuned vibration absorber [J]. Journal of Intelligent Material Systems and Structures, 2010, 21(10):1039-1047.
[17] CARLSON J D, JOLLY M R. MR fluid, foam and elastomer devices [J]. mechatronics, 2000, 10(4): 555-69.
[18] CHEN L, GONG X, LI W. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers [J]. Smart Materials and Structures, 2007, 16(6): 2645.
[19] LI Y, LI J, TIAN T, et al. A highly adjustable magnetor- heological elastomer base isolator for applications of real-time adaptive control [J]. Smart Materials and Structures, 2013, 22(9): 095020.
[20] YU Y, LI Y, LI J. Forecasting hysteresis behaviours of magnetorheological elastomer base isolator utilizing a hybrid model based on support vector regression and improved particle swarm optimization [J]. Smart Materials and Structures, 2015, 24(3): 035025.
[21] SUN S, CHEN Y, YANG J, et al. The development of an adaptive tuned magnetorheological elastomer absorber working in squeeze mode [J]. Smart Materials and Structures, 2014, 23(7): 075009.
[22] FENG J, XUAN S, LIU T, et al. The prestress-dependent mechanical response of magnetorheological elastomers [J]. Smart Materials and Structures, 2015, 24(8): 085032.
[23] CHEN L, GONG X, LI W. Effect of carbon black on the mechanical performances of magnetorheological elastomers [J]. Polymer Testing, 2008, 27(3): 340-5.
[24] WU J, GONG X, FAN Y, et al. Anisotropic polyurethane magnetorheological elastomer prepared through in situ polycondensation under a magnetic field [J]. Smart Materials and Structures, 2010, 19(10): 105007.
[25] GINDER J M, SCHLOTTER W F, NICHOLS M E. Magnetorheological elastomers in tunable vibration absorbers; proceedings of the SPIE's 8th Annual International Symposium on Smart Structures and Materials, F, 2001 [C]. International Society for Optics and Photonics.
[26] DENG H-X, GONG X-L, WANG L-H. Development of an adaptive tuned vibration absorber with magnetorheological elastomer [J]. Smart materials and structures, 2006, 15(5): N111.
[27] LI W, ZHANG X, DU H. Development and simulation evaluation of a magnetorheological elastomer isolator for seat vibration control [J]. Journal of Intelligent Material Systems and Structures, 2012, 1045389X11435431.
[28] DU H, LI W, ZHANG N. Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator [J]. Smart materials and structures, 2011, 20(10): 105003.
[29] LIAO G, GONG X, XUAN S, et al. Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer [J]. Journal of Intelligent Material Systems and Structures, 2012, 23(1): 25-33.
[30] LI Y, LI J, LI W, et al. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator [J]. Smart Materials and Structures, 2013, 22(3): 035005.
[31] LI Y, LI J, LI W, et al. A state-of-the-art review on magnetorheological elastomer devices [J]. Smart Materials and Structures, 2014, 23(12): 123001.
[32] YANG Z, QIN C, RAO Z, et al. Design and analyses of axial semi-active dynamic vibration absorbers based on magnetor- heological elastomers [J]. Journal of Intelligent Material Systems and Structures, 2014, 25:2199-2207.

PDF(1816 KB)

435

Accesses

0

Citation

Detail

段落导航
相关文章

/