实时混合试验将结构的关键部位作为试验子结构进行试验,而其余部分作为数值子结构在计算机中模拟,并通过作动器或振动台对试验子结构进行加载来实现二者边界条件的协调。由于作动器-试件系统复杂的非线性动力特性,传统的PID控制器性能受到一定影响,必须采用时滞补偿方法或外环控制消除作动器-试件系统的非线性动力特性影响,才能保证实时混合试验的成功。为在作动器内环消除作动器-试件系统非线性动力特性的影响,本文采用基于混合灵敏度的H∞控制理论设计实时混合试验作动器内环控制器,并研究了这种方法的可行性。数值仿真表明,H∞控制器表现出较好的跟踪性能并具有一定的鲁棒性;单自由度线弹性结构实时混合试验证明了该方法在作动器内环控制上的可行性。
Abstract
Real-time hybrid simulation (RTHS) takes the critical parts of the structure as experimental substructure, and simulates the remainder of the structure in the computer. A transfer system (actuator or shaking table) is used to guarantee the boundary compatible between these two parts. Owing to the inherent complexity nonlinear dynamic characteristic of the actuator-specimen system, the performance of the traditional PID controller is easy to be effected, the time delay compensation or the outer-loop control strategy must be used to eliminate the influence of the nonlinear dynamic characteristic, to insure the success of RTHS. In this paper, the H∞ control theory based on the mixed sensitivity is employed to design the inner-loop controller of RTHS. Numerical simulations indicate that the H∞ controller has an excellent tracking performance and robustness. And RTHS of a linear elastic single-degree-of-freedom structure demonstrates that the H∞ control strategy is feasible to be used as the inner-loop controller.
关键词
实时混合试验;内环控制;H&infin /
控制;鲁棒性;混合灵敏度
{{custom_keyword}} /
Key words
real-time hybrid simulation /
inner loop control /
H&infin /
control /
robustness /
mixed sensitivity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Nakashima M, Kato H, Takaoka E. Development of real‐time pseudo dynamic testing[J]. Earthquake Engineering & Structural Dynamics, 1992, 21(1): 79-92.
[2] Wagg D J, Stoten D P. Substructuring of dynamical systems via the adaptive minimal control synthesis algorithm [J]. Earthquake engineering & structural dynamics, 2001, 30(6): 865-877.
[3] Stoten D P, Tu J Y, Li G. Synthesis and control of generalized dynamically substructured systems [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2009, 223(3): 371-392.
[4] Phillips B M, Spencer Jr B F. Model-Based Feedforward Feedback Actuator Control for Real-Time Hybrid Simulation [J]. Journal of Structural Engineering, 2013, 139(7):1205-1214.
[5] Wu B, Zhou H. Sliding mode for equivalent force control in real-time substructure testing[J]. Structural Control and Health Monitoring, 2014, 21(10): 1284-1303.
[6] Zames G. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses[J]. IEEE Transactions on Automatic Control, 1981, 26(2):301-320.
[7] 徐洋, 姜洪洲, 叶正茂, 等. H∞控制在AMD Benchmark结构主动控制中的应用研究[J]. 振动与冲击, 2005, 24(5): 14-17.
Xu Yang, Jiang Hongzhou, Ye Zhengmao, et al. Research on the application of H∞ control in the MD active structure control benchmark problem [J]. Journal of Vibration and Shock, 2005, 24(5): 14-17. (in Chinese)
[8] Gao X, Castaneda N, Dyke S J. Real time hybrid simulation: from dynamic system, motion control to experimental error[J]. Earthquake Engineering & Structural Dynamics, 2013, 42(6):815-832.
[9] Zhou K, Doyle J C, Glover K. Robust and Optimal Control [M]. New Jersey: Prentice Hall, 1996, 442-445.
[10] 吴旭东, 解学书. H∞鲁棒控制中的加权阵选择 [J]. 清华大学学报:自然科学版, 1997, 37(1): 27-30.
Wu Xudong, Xie Xueshu. Weighting function matrix selection in H∞ robust control [J]. Journal of Tsinghua University (Sci & Tech), 1997, 37(1): 27-30. (in Chinese)
[11] 邢宗义, 张媛, 侯远龙, 等. 电液伺服系统的建模方法研究与应用[J]. 系统仿真学报, 2009, 21(6): 1719-1725.
Xing Zongyi, Zhang Yuan, Hou Yuan-long, et al. Modeling of electrohydraulic system and its application [J]. Journal of System Simulation, 2009, 21(6): 1719-1725. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}