三相邻结构的减震效果分析

刘良坤1,谭平2,闫维明1,周福霖1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 9-15.

PDF(1864 KB)
PDF(1864 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (15) : 9-15.
论文

三相邻结构的减震效果分析

  • 刘良坤1,谭平2,闫维明1,周福霖1,2
作者信息 +

The Seismic Reduction Analysis of Three Adjacent Structures

  • LIU Liangkun1 , TAN Ping2 , YAN Wei-ming1, ZHOU Fulin1,2
Author information +
文章历史 +

摘要

本文提出对三个相邻结构间连接阻尼装置进行减震控制,推导了其单自由度简化模型随机响应计算公式,同时也给出了多自由度模型的阻尼、刚度等矩阵的构造方法并利用复模态法推导了其随机响应公式;最后对单自由度简化模型的三相邻结构各组合情况的减震效果分别进行了分析,并详细研究一般情况下的多自由度模型的三相邻结构减震效果。经仿真分析表明,三相邻结构控制后与两相邻结构控制所得结果基本相同;在两相邻结构对称而控制无效的情况下,三相邻结构仍可得到较好的控制效果;三相邻结构具有良好的鲁棒性,且对高阶响应峰值抑制明显。

Abstract

An idea of the control among three adjacent structures attached to damping device is presented in this paper. The stochastic response formula has been formulated based on a single degree-of-freedom system model. Further, the formula of the multi-degree-of-freedom system have been deduced based on complex mode superposition method with the corresponding damping coefficient matrix, stiffness matrix, etc, constituted. Finally, the seismic reduction of various combination situations of the single degree-of-freedom system model are analyzed respectively as well as the general situation of multi-degree-of-freedom system. The simulation results show that the seismic reduction effectiveness for three adjacent structures and two adjacent structures are comparable, whereas the former still behave well even if the latter is failed to control themselves because of symmetry. In addition, three adjacent structures are still of favorable robustness and significant suppression for higher-order response peaks under random earthquake excitation.

关键词

相邻结构 / 复模态 / 对称 / 控制 / 鲁棒性

Key words

adjacent structures / complex mode / symmetry / control / robustness

引用本文

导出引用
刘良坤1,谭平2,闫维明1,周福霖1,2. 三相邻结构的减震效果分析[J]. 振动与冲击, 2017, 36(15): 9-15
LIU Liangkun1,TAN Ping2,YAN Wei-ming1, ZHOU Fulin1,2. The Seismic Reduction Analysis of Three Adjacent Structures[J]. Journal of Vibration and Shock, 2017, 36(15): 9-15

参考文献

[1] 卢明奇, 杨庆山. 地震作用下相邻建筑结构的最大相对位移[J]. 土木工程学报, 2012(3):74-78.
Lu Mingqi, Yang Qingshan, Maximum relative displacement between adjacent structures[J]. China Civil Engineering Journal, 2012(3):74-78.
[2] Zhai C, Jiang S, Li S, et al. Dimensional analysis of earthquake-induced pounding between adjacent inelastic MDOF buildings[J]. Earthquake Engineering & Engineering Vibration, 2015, 14(2):295-313.
[3] 翟长海, 蒋姗, 李爽,等. 地震作用下相邻建筑结构碰撞反应分析[J]. 土木工程学报, 2012(S2):142-145.
Zhai Changhai, Jiang Shan, Li Shuang.etc. Analysis of earthquake-induced pounding for two adjacent building structures[J]. China Civil Engineering Journal, 2012(S2):142-145.
[4] Xu Y L, He Q, Ko J M. Dynamic response of damper-connected adjacent buildings under earthquake excitation[J]. Engineering Structures, 1999, 21(2):135-148.
[5] Zhang W S, Xu Y L. Dynamic characteristics and seismic response of adjacent buildings linked by discrete dampers[J]. Earthquake Engineering & Structural Dynamics, 1999, 28(10):1163–1185.
[6] Zhu H P, Xu Y L. Optimum parameters of Maxwell model-defined dampers used to link adjacent structures[J]. Journal of Sound & Vibration, 2005, 279(1-2):253-274.
[7] Zhang W S, Y. L. X U. VIBRATION ANALYSIS OF TWO BUILDINGS LINKED BY MAXWELL MODEL-DEFINED FLUID DAMPERS[J]. Journal of Sound & Vibration, 2000, 233(5):775-796.
[8] 朱宏平, 俞永敏. 地震作用下主—从结构的被动优化控制研究[J]. 应用力学学报, 2000, 17(2):63-69.
Zhu Hongping, Yu Yongmi, Tang Jiaxiang.朱. Optimal passive control of primary-auxiliary structures under earthquake excitation[J]. Chinese Journal of Applied Mechanics, 2000, 17(2):63-69.
[9] Zhu H, Wen Y, Iemura H. A study on interaction control for seismic response of parallel structures[J]. Computers & Structures, 2001, 79(2):231-242.
[10] 黄潇, 朱宏平. 地震作用下相邻结构间阻尼器的优化参数研究[J]. 振动与冲击, 2013, 32(16):117-122.
Huang Xiao, Zhu Hongping. Optimum parameters of dampers interconnecting adjacent structures under earthquakes[J]. Journal of Vibration and Shock, 2013, 32(16):117-122.
[11] Ge D D, Zhu H P, Wang D S, et al. Seismic response analysis of damper-connected adjacent structures with stochastic parameters[J]. Journal of Zhejiang Universityence A, 2010, 11(6):402-414.
[12] Richardson A, Walsh K K, Abdullah M M. Closed-form equations for coupling linear structures using stiffness and damping elements[J]. Structural Control & Health Monitoring, 2013, 20(3):259–281.
[13] Ok S Y, Song J, Park K S. Optimal design of hysteretic dampers connecting adjacent structures using multi-objective genetic algorithm and stochastic linearization method[J]. Engineering Structures, 2008, 30(5):1240-1249.
[14] Basili M, Angelis M D. Optimal passive control of adjacent structures interconnected with nonlinear hysteretic devices[J]. Journal of Sound & Vibration, 2007, 301(1-2):106–125.
[15] Ng C L, Xu Y L. Semi-active control of a building complex with variable friction dampers[J]. Engineering Structures, 2007, 29(6):1209–1225.
[16] Park K S, Ok S Y. Hybrid control approach for seismic coupling of two similar adjacent structures[J]. Journal of Sound & Vibration, 2015, 349:1-17.
[17] Bharti S D, Dumne S M, Shrimali M K. Seismic response analysis of adjacent buildings connected with MR dampers[J]. Engineering Structures, 2010, 32(8):2122-2133.
[18] Ying Z G, Ni Y Q, Ko J M. Stochastic optimal coupling-control of adjacent building structures[J]. Computers & Structures, 2003, 81(s 30–31):2775-2787.
[19] Kim J, Ryu J, Chung L. Seismic performance of structures connected by viscoelastic dampers[J]. Engineering Structures, 2006, 28(2):183-195.

PDF(1864 KB)

Accesses

Citation

Detail

段落导航
相关文章

/