A Review on Micro Wind Energy Harvesters Based Wind Induced Vibration
Zhao Xingqiang 1,2 Wang Junlei3 Cai Jun 1,2 Guo Ying 1,2
Author information+
1. C-MEIC, School of Information and Control, Nanjing University of Information Science & Technology, Nanjing 210044;
2. CICAEET, Nanjing University of Information Science & Technology, Nanjing 210044;
3. School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450002
In the field of environmental energy harvesting, it has become a hot topic on the micro wind energy harvester based on wind induced vibration. The present situation and development trends about the wind harvesters are reviewed in this paper. Two processes of energy conversion, wind flow to vibration and vibration to electricity, are discussed. The fundamental theory and typical structures of the micro wind energy harvester are mainly analyzed based on vortex-induced-vibration, flutter, galloping and resonant cavity. It is found that the piezoelectric effect is the main mode for electromechanical conversion, and the flutter and galloping are the main trend for wind-induced vibration.
Zhao Xingqiang 1,2 Wang Junlei3 Cai Jun 1,2 Guo Ying 1,2.
A Review on Micro Wind Energy Harvesters Based Wind Induced Vibration [J]. Journal of Vibration and Shock, 2017, 36(16): 106-112
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Zhou G, Huang L, Li W, et al. Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey[J]. Journal of Sensors, 2014, 2014:1-20.
[2] Tang L, Zhao L, Yang Y, et al. Equivalent Circuit Representation and Analysis of Galloping-Based Wind Energy Harvesting[J]. Mechatronics IEEE/ASME Transactions on, 2015, 20(2):834-844.
[3] Goushcha O, Akaydin H D, Elvin N, et al. Energy harvesting prospects in turbulent boundary layers by using piezoelectric transduction[J]. Journal of Fluids and Structures, 2015,54: 823–847.
[4] Holmes A S, Hong G, Pullen K R. Axial-flux permanent magnet machines for micropower generation[J]. Journal of microelectromechanical systems, 2005, 14(1): 54-62.
[5] Gao X, Shih W H, Shih W Y. Flow Energy Harvesting Using Piezoelectric Cantilevers With Cylindrical Extension[J]. Industrial Electronics IEEE Transactions on, 2013, 60(3): 1116-1118.
[6] Bryant M, Wolff E, Garcia E. Aeroelastic flutter energy harvester design: the sensitivity of the driving instability to system parameters[J]. Smart Materials & Structures, 2011, 20(12):125017-125028
[7] 赵兴强, 温志渝. 柔性梁颤振机理在压电式微型风能收集器设计中的应用[J]. 重庆大学学报, 2013, 36(8): 45-150.
Zhao X, Wen Z, Design of a miniaturized wind energy harvester based on a fluttering flexible beam[J]. Journal of Chongqing University, 2013, 36(8): 45-150.
[8] Priya S, Inman D J. Energy harvesting technologies[M]. New York, USA: Springer, 2008.
[9] 丁志强, 陈仁文, 章飘艳,等. 球形永磁阵列振动能量收集器设计与优化[J]. 振动与冲击, 2016, 35 (2): 212-217.
DING Zhi-qiang, CHEN Ren-wen, ZHANG Piao-yan, et al. Design and optimization of spherical magnet array structure of energy harvesting system[J]. Journal of Vibration and Shock, 2016, 35(2): 212-217.
[10] Yang Y, Wang Z. Hybrid energy cells for simultaneously harvesting multi-types of energies[J]. Nano Energy. 2015, 14: 245-256.
[11] Guo H, He X, Zhong J, et al. A nanogenerator for harvesting airflow energy and light energy[J]. Journal of Materials Chemistry A, 2014, 2(7): 2079-2087.
[12] Krupenkin T, Taylor J A. Reverse electrowetting as a new approach to high-power energy harvesting[J]. Nature communications, 2011, 2(2): 73-86.
[13] Deng Q, Kammoun M, Erturk A, et al. Nanoscale flexoelectric energy harvesting[J]. International Journal of Solids & Structures, 2014, 51(51): 3218-3225.
[14] 秦伟. 涡激振动的非线性振子模型研究[D]. 哈尔滨:哈尔滨工程大学, 2011.
Qin W. The study of non-linear coupling model in vortex-induced vibration[D]. Harbin: Harbin Engineering University, 2011.
[15] Lin D, Li Z, Wu C, et al. Flow induced motion and energy harvesting of bluff bodies with different cross sections[J]. Energy Conversion & Management, 2015, 91:416-426.
[16] Mehmood A, Abdelkefi A, Hajj M R, et al. Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder[J]. Journal of Sound & Vibration, 2013, 332(19):4656-4667.
[17] Weinstein L A, Cacan M R, So P M, et al. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows[J]. Smart Materials & Structures, 2012, 21(4):45003-45012.
[18] Dai H L, Abdelkefi A, Wang L. Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations[J]. Nonlinear Dynamics, 2014, 77(3). 967-981.
[19] 李永乐, 朱佳琪, 唐浩俊. 基于CFD和CSD耦合的涡激振和颤振气弹模拟[J]. 振动与冲击, 2015, 34(12): 85-89.
Li Y, Zhu J, Tang H. Aeroelastic simulation of vortex-induced vibration and flutter based on CFD/CSD coupling solution[J]. Journal of Vibration and Shock, 2015, 34(12): 85-89.
[20] 郝浩. 桥梁结构的驰振现象及其控制[D]. 西安:长安大学, 2010.
Hao H, The galloping phenomenon and its control of brige structure[D].Xi’an: Chang’an University, 2010.
[21] Tang L, Païdoussis M P. On the instability and the post-critical behaviour of two-dimensional cantilevered flexible plates in axial flow[J]. Journal of Sound and Vibration, 2007, 305(1): 97-115.
[22] http://humdingerwind.com/#/wi_micro/[EB/OL]. 2010.
[23] Bryant M, Wolff E, Garcia E. Aeroelastic flutter energy harvester design: the sensitivity of the driving instability to system parameters[J]. Smart Materials & Structures, 2011, 20(12): 125017-125028.
[24] Jr C D M, Erturk A. Electroaeroelastic analysis of airfoil-based wind energy harvesting using piezoelectric transduction and electromagnetic induction[J]. Journal of Intelligent Material Systems & Structures, 2013, 24(7):846-854.
[25] Kwon S D. A T-shaped piezoelectric cantilever for fluid energy harvesting[J]. Applied Physics Letters, 2010, 97(16):164102-164102-3.
[26] Kornecki A, Dowell E H, O'Brien J. On the aeroelastic instability of two-dimensional panes in uniform incompressible flow[J]. Journal of Sound and Vibration, 1976, 47(2): 163-178.
[27] Eloy C, Kofman N, Schouveiler L. The origin of hysteresis in the flag instability[J]. Journal of Fluid Mechanics, 2011, 691(1):583-593.
[28] Singh K, Michelin S, De Langre E. The effect of non-uniform damping on flutter in axial flow and energy-harvesting strategies[J]. Proceedings of the Royal Society A, 2012, 468: 3620-3635
[29] Li S, Yuan J P, Lipson H. Ambient wind energy harvesting using cross-flow fluttering[J]. Journal of Applied Physics, 2011, 109(2):026104 - 026104-3.
[30] Perez M, Boisseau S, Gasnier P, et al. An electret-based aeroelastic flutter energy harvester[J]. Smart Materials & Structures, 2015, 24(3):35004-35015.
[31] Abdelkefi A, Nuhait A O. Modeling and performance analysis of cambered wing-based piezoaeroelastic energy harvesters[J]. Smart Materials & Structures, 2013, 22(9):1323-1327.
[32] Erturk A, Vieira W G R, De Marqui C, et al. On the energy harvesting potential of piezoaeroelastic systems[J]. Applied Physics Letters, 2010, 96(18):184103-184103-3.
[33] Zhu Q, Haase M, Wu C H. Modeling the capacity of a novel flow-energy harvester[J]. Applied Mathematical Modelling, 2009, 33(5):2207-2217.
[34] Simiu E, Scanlan R H. Wind Effect on Structures: An Introduction to Wind Engineering[M]. NewYork, USA: Wiley-Interscience, 1986.
[35] Yang Y, Zhao L, Tang L. Comparative study of tip cross-sections for efficient galloping energy harvesting[J]. Applied Physics Letters. 2013. 102(6). 64105
[36] Abdelkefi A, Yan Z, Hajj M R, et al. Performance analysis of galloping-based piezoaeroelastic energy harvesters with different cross-section geometries[J]. Journal of Intelligent Material Systems & Structures, 2013, 25(2):246-256.
[37] Dai H L, Abdelkefi A, Wang L, et al. Control of cross-flow-induced vibrations of square cylinders using linear and nonlinear delayed feedbacks[J]. Nonlinear Dynamics, 2014, 78(2):907-919.
[38] Ewere F, Wang G, Cain B. Experimental investigation of galloping piezoelectric energy harvesters with square bluff bodies[J]. Smart Materials & Structures, 2014, 23(10):104012-104023.
[39] Sirohi J, Mahadik R. Harvesting wind energy using a galloping piezoelectric beam[J]. Journal of vibration and acoustics, 2012, 134(1): 11009
[40] Vicente-Ludlam D, Barrero-Gil A, Velazquez A. Optimal electromagnetic energy extraction from transverse galloping[J]. Journal of Fluids & Structures, 2014, 51:281–291.
[41] 雷军命. 引信气流谐振压电发电机[J]. 探测与控制学报, 2009, 23(1): 23-26.
LEI J. An Air-driven Fluidic Resonance Piezoelectric Generator for Fuzes[J]. Journal of Detection &Control, 2009, 23(1): 23-26.
[42] Zou H, Chen H, Zhu X. Piezoelectric energy harvesting from vibrations induced by jet-resonator system[J]. Mechatronics, 2015, 26: 29-35.
[43] Kim S, Ji C, Galle P, et al. An electromagnetic energy scavenger from direct airflow[J]. Journal of Micromechanics and Microengineering. 2009. 19(9). 94010
[44] Wang X, Pan C L, Liu Y B, et al. Electromagnetic resonant cavity wind energy harvester with optimized reed design and effective magnetic loop[J]. Sensors & Actuators A Physical, 2014, 205(1): 63-71.
[45] Jung H J, Lee S W. The experimental validation of a new energy harvesting system based on the wake galloping phenomenon[J]. Smart Materials & Structures, 2011, 20(5): 55022-55031.
[46] Zhu D, Beeby S, Tudor J, et al. A novel miniature wind generator for wireless sensing applications[J]. Sensors IEEE, 2010, 143(2): 1415-1418.
[47] Liu H, Zhang S, Kobayashi T, et al. Flow sensing and energy harvesting characteristics of a wind-driven piezoelectric Pb(Zr0.52, Ti0.48)O3 microcantilever[J]. Micro & Nano Letters let, 2014, 9(4): 286-289.
[48] He X, Gao J. Wind energy harvesting based on flow-induced-vibration and impact[J]. Microelectronic Engineering, 2013, 111: 82-86.