RC柱侧向冲击破坏模式的数值模拟研究

刘飞1,2,罗旗帜1,严波2,蒋志刚2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (16) : 122-127.

PDF(2235 KB)
PDF(2235 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (16) : 122-127.
论文

RC柱侧向冲击破坏模式的数值模拟研究

  • 刘飞1,2 ,罗旗帜1,严波2,蒋志刚2
作者信息 +

Numerical study on the failure mode of RC column subjected to lateral impact

  • LIU Fei1  LUO Qi-zhi 2  BO Yan 2  JIANG Zhi-gang2
Author information +
文章历史 +

摘要

本文采用非线性有限元方法对有轴压力RC柱的动态响应过程进行了数值仿真,分析了RC柱的破坏模式及其转换机理,研究了轴压力的影响。结果表明:有轴压力RC柱剪切破坏过程可分为斜裂缝形成、箍筋屈服和完全破坏三个阶段,其变形模式先后为撞击点局部弯曲、整体弯曲和柱子根部局部剪切变形;静力条件下弯曲破坏RC柱在冲击作用下可能发生剪切破坏,其重要原因是纵筋应变率大于箍筋应变率;随着轴压比的增大,发生剪切破坏的RC柱趋向于发生由混凝土抗压强度控制的弯曲破坏。

Abstract

The dynamic responses of RC columns with axial loads subjected to lateral impact was simulated with nonlinear finite element method. The failure mode and its transition mechanisms, the influences of axial loads were investigated. The results showed that the shear failure process of RC columns can be divided into three stages, i.e., diagonal cracks development, transverse reinforcement yield and global failure. The deformation mode had gone through the local flexural deformation, the overall flexural deformation and the local shear deformation successively. RC columns which failed in flexure under static load would fail in shear under impact load, one of the important reasons was the different of strain rate between main reinforcement and transverse reinforcement, the strain rate of main reinforcement was greater than that of transverse reinforcement. RC columns tended to fail in flexure which was controlled by compressive strength of concrete with increase of axial load ratio.
 

关键词

RC柱 / 冲击 / 数值模拟 / 破坏模式 / 应变率效应

Key words

 RC columns / impact / numerical simulation / failure modal transition / strain rate effects

引用本文

导出引用
刘飞1,2,罗旗帜1,严波2,蒋志刚2. RC柱侧向冲击破坏模式的数值模拟研究[J]. 振动与冲击, 2017, 36(16): 122-127
LIU Fei1 LUO Qi-zhi 2 BO Yan 2 JIANG Zhi-gang2. Numerical study on the failure mode of RC column subjected to lateral impact[J]. Journal of Vibration and Shock, 2017, 36(16): 122-127

参考文献

[1] Jayasooriya R, Thambiratnam D P, Perera N J, et al. Blast and residual capacity analysis of reinforced concrete framed buildings[J].Engineering Structures,2011,33(12):3483–3495.
[2] Sharma H, Gardoni P, Hurlebaus S. Probabilistic demand model and performance-based fragility estimates for RC column subject to vehicle collision[J]. Engineering Structures, 2014, 74: 86–95.
[3] Fujikake K, Li B, Soeun S. Impact Response of Reinforced Concrete Beam and Its Analytical Evaluation[J]. Journal of Structural Engineering, 2009,135(8): 938-950.
[4] Cotsovos D M, Stathopoulos N D, Zeris C A. Behavior of RC Beams Subjected to High Rates of Concentrated Loading[J]. Journal of Structural Engineering, 2008, 134(12): 1839-1851.
[5] 赵德博,易伟建. 钢筋混凝土梁抗冲击性能和设计方法研究[J]. 振动与冲击, 2015,34(11): 139-145.
ZHAO De-bo, YI Wei-jian. Anti-impact behavior and design method for RC beams[J]. Journal of vibration and shock, 2015, 34(11): 139-145.
[6] 廖维张,张伟,田志敏. 高强钢绞线网-高性能砂浆加固钢筋混凝土梁抗冲击性能试验研究[J]. 振动与冲击, 2014, 33(12): 200-206.
LIAO Wei-zhang, ZHANG Wei, TIAN Zhi-min. Tests for impact resistance properties of RC beams strengthened with high strength steel wire mesh and high performance mortar[J]. Journal of vibration and shock, 2014, 33(12): 200-206.
[7] Adhikary S D, Li B, Fujikake K. Dynamic behavior of reinforced concrete beams under varying rates of concentrated loading[J]. International Journal of Impact Engineering, 2012, 47: 24-38.
[8] 田力, 朱聪, 王浩, 封新华.碰撞冲击荷载作用下钢筋混凝土柱的动态响应及破坏模式[J].工程力学,2013,30(2): 150-155.
TIAN Li, ZHU Cong, WANG Hao, FENG Xin-hua.  Dynamic response and failure modes of RC columns under impact[J]. ENGINEERING MECHANICS, 2013,30(2):150- 155.
[9] 陈海彬, 高静, 葛楠, 等. 钢筋混凝土柱在冲击荷载作用下破坏模式研究[J]. 建筑结构学报,2009, S2: 104-108.
CHEN Hai-bin, GAO Jing, GE Nan, et al. Investigation on failure mode of RC members subjected to impulsive load[J]. Journal of Building Structures, 2009, S2: 104-108.
[10] Wang X G, Zhang Y M, Su Y P, et al. Experimental investigation on the effect of reinforcement ratio to capacity of RC column to resist lateral impact loading[J]. Systems Engineering Procedia , 2011,1: 35–41.
[11] Sha Y Y, Hao H. Laboratory tests and numerical simulations of barge impact on circular reinforced concrete piers[J]. Engineering Structures , 2013, 46: 593–605.
[12] Loedolff M J. The behaviour of reinforced concrete cantilever columns under lateral impact load[D]. The university of Stellenbosch, 1989.
[13] Remennikov A M, Kaewunruen S. Impact resistance of reinforced concrete columns: experimental studies and design considerations[C]// 19th Australasian Conference on the Mechanics of Structures and Materials, 2006. 817-824.
[14] Ožbolt J, Sharma A. Numerical simulation of reinforced concrete beams with different shear reinforcements under dynamic impact loads[J]. International Journal of Impact Engineering , 2011,38: 940-950.
[15] Murray Y D. User manual for LS_DYNA concrete material model 159[R]. McLean: Federal Highway Administration, 2007.
[16] Murray Y D, Abu-Odeh A, Bligh R. Evaluation of LS- DYNA Concrete Material Model 159[R]. McLean: Federal Highway Administration, 2007.
[17] Reddy T Y, Reid S R. Phenomena associated with the crushing of metal tubes between rigid plates[J]. International Journal of Solids and Structures, 1980,16(6): 545–562.
[18] Tanimura S, Tsuda T, Abe A, et al. Comparison of rate-dependent constitutive models with experimental data[J]. International Journal of Impact Engineering , 2014, 69: 104-113.

PDF(2235 KB)

444

Accesses

0

Citation

Detail

段落导航
相关文章

/