为揭示摆线钢球行星传动的非线性动力学行为,建立包括外部激励、啮合副啮合状态及啮合刚度等非线性因素的纯扭转强非线性耦合动力学模型。建立能够描述啮合副所处状态的预紧非线性函数,根据静力学分析获得啮合点静态变形量,建立非线性动力学微分方程组,利用数值分析方法获得系统随压缩量、阻尼系数变化的分叉图,并绘制不同参数下的相图和庞加莱图,研究不同参数对系统分叉特性的影响规律。结果表明,轴向压缩量对系统稳定性影响较大;轴向压缩量和旋转阻尼系数增加,高速运转的系统最终稳定于短周期运动,低速运转的系统最终稳定于准周期运动;阻尼较小时系统在低速状态下的稳定性较高,阻尼较大时系统在高速状态下的稳定性较高。
Abstract
In order to reveal the nonlinear dynamic behavior of the cycloid ball planetary transmission, pure torsion strengthening nonlinear coupling dynamic model is established and external excitation and meshing pair meshing state and meshing stiffness of the nonlinear factors are included in the model. The nonlinear function of the preload is established to describe the state of the meshing pair. According to the static analysis, the static deformation of meshing point is obtained, and then set up the nonlinear dynamic differential equations, using MATLAB to obtain the system with pressure shrinking, damping coefficient of variation of the bifurcation diagram and draw different parameters of phase diagram and Poincare map.The effects of different parameters on the bifurcation characteristics of the system are studied.The results show that the axial compression has a great influence on the stability of the system.Increase of axial compression and rotational damping coefficient, the system at high speed operation is stable in the short period, the system at low speed operation is stable in the quasi periodic motion. The stability of small damping system is higher in low speed state, the stability of high damping system is high in the high speed state.
关键词
摆线钢球行星传动 /
非线性振动 /
分叉 /
混沌 /
准周期
{{custom_keyword}} /
Key words
Cycloid ball planetary transmission /
Nonlinear vibration /
Bifurcation /
Chaos /
Quasi period;
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王国彪,赖一楠,范大鹏,等. 新型精密传动机构设计与制造综述. 中国机械工程,2010 ,21(16):1891-1897.
Wang Guobiao, Lai Yinan, Fan Dapeng, et al. Summary of New Type Precision Transmission Design and Manufacture[J]. China Mechanical Engineering, 2010, 21(16):1891-1897.
[2] 徐盛林,陈 耿. 精密超精密定位技术及其应用[J]. 中国机械工程,1997 ,(1):73-75.
Xu shenglin, Chen Geng. Precision Ultra-precision Positioning Technology and Its Applications[J]. China Mechanical Engineering, 1997,(1):73-75.
[3]. Terada H, Makino H, Imase K. Fundamental analysis of a cycloid ball reducer,(1st report) Motion principle[J]. J. Japan Soc. for Precision Engineering, 1988, 54(11): 2101-2106.
[4]. Terada H, Makino H, Imase K. Fundamental analysis of a cycloid ball reducer,(2st report) Motion principle[J]. J. Japan Soc. for Precision Engineering, 1990, 56(4): 751-756.
[5]. Terada H, Makino H, Imase K. Fundamental analysis of cycloid ball reducer (3rd report)-strength design[J]. JOURNAL-JAPAN SOCIETY FOR PRECISION ENGINEERING, 1995, 61: 1705-1709.
[6] Terada H, Makino H, Imase K. Fundamental analysis of cycloid ball reducer (4th Report)-efficiency analysis and development of the Oldham's type output mechanism[J]. JOURNAL-JAPAN SOCIETY FOR PRECISION ENGINEERING, 1997, 63: 834-838.
[7] 安子军,杨荣刚,宜亚丽. 精密钢球传动啮合法向力与弹性回差[J]. 机械工程学报,2016, 52(9): 42-48.
An Zijun, Yang Ronggang, Yi Yali. Engagement Normal Force and Elastic Ball Transmission. Journal of Mechanical Engineering,2016, 52(9): 42-48.
[8] 安子军,张 鹏,杨作梅. 摆线钢球行星传动系统参数振动特性研究[J]. 工程力学,2012, 29(3):244-251.
An Zijun, Zhang Peng, Yang Zuomei. Research on Properties for Parametric Vibration of Cycloid Ball Planetary Transmission System[J]. Engineering Mechanics, 2012, 29(3):244-251.
[9] 张 鹏,安子军. 摆线钢球行星传动动力学建模与固有特性分析[J]. 中国机械工程,2014, 25(2):157-162.
Zhang Peng, An Zijun. Dynamics Model and Natural Characteristics of Cycloid Ball Planetary Transmission[J]. China Mechanical Engineering, 2014, 25(2):157-162.
[10] 陈思雨,唐进元,谢耀东. 齿轮传动系统的非线性冲击动力学行为分析[J]. 振动与冲击,2009,,28(4):70-75,204.
CHEN Siyu, TANG Jinyuan, XIE Yaodong. Analysis of nonlinear impact dynam ic behavior for agear pair system with tim e-varying stiffness and friction[J]. Journal of vibration and shock,2009,28(4):70-75,204.
[11] AL-SHYYAB A,KAHRAMAN A. A non-linear dynamic model for planetary gear sets[J]. Proceedings of the Institution of Mechanical Engineers,Part K-Journal of Multi-body Dynamics,2007,221(4):567-576.
[12] 孙涛,沈允文,孙智民,等. 行星齿轮传动非线性动力学方程求解与动态特性分析[J]. 机械工程学报,2002,38(3):11-15.
SUN Tao,SHEN Yunwen,SUN Zhimin,et al. Study on nonlinear dynamic behavior of planetary gear train solution and dynamic behavior analysis[J]. Journal of Mechanical Engineering,2002,38(3):11-15.
[13] Harris T A, Kotzalas M N. Rolling bearing analysis[M]. CRC/Taylor & Francis, 2006.
[14] 李同杰,朱如鹏,鲍和云,等. 行星齿轮传动非线性振动建模与运动分叉特性研究[J]. 机械工程学报,2011,47(21):76-83.
LI Tongjie,ZHU Rupeng,BAO Heyun,et al. Nonlinear torsional vibration modeling and bifurcation characteristic study of a planetary gear train[J]. Journal of Mechanical Engineering,2011,47(21):76-83.
[15] 冯进铃,徐伟. 碰撞振动系统中周期轨擦边诱导的混沌激变[J]. 力学学报,2011,45(1):30-36.
Feng Jinqian,Xu Wei. Grazing-induced Chaostic Crisis for Periodic Orbits in Vibro-impact Systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011,45(1):30-36.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}