受爆炸场中寄生效应的影响,需要采取相应抑制措施对冲击波压力传感器进行改造。为研究冲击波压力传感器组件的动态特性,基于双膜激波管对冲击波压力传感器组件进行动态校准,获得了阶跃响应信号;采用微分法求取了传感器组件动态特性非参数模型;根据冲击波压力传感器组件动态特性非参数模型变化规律,在频域内对其进行合理分段,并基于BP神经网络分段建模方法得到传感器组件动态特性模型;通过实例分析与比较,证明了基于BP神经网络的分段建模方法能够有效提高模型精度和建模效率。
Abstract
Affected by the parasitic in explosion field, appropriate measures need to be taken to reform the shock wave pressure sensor. To research the dynamic characteristics of shock wave pressure sensor assembly, based on double-diaphragm shock tube, the pressure sensor assembly of the shock wave can be calibrated and give a step response signal; Then the dynamic characteristics of the sensor assembly’s nonparametric model can be obtained by differential method; According to the non-parametric model’s variation of the shock wave pressure sensor assembly’s dynamic characteristics, the dynamic characteristics should be reasonably segmented in frequency domain, and each part of the dynamic characteristics can be modeled based on BP neural network; Through analysis and comparison of an examples, it can be proved that segment modeling method based on BP neural network can effectively improve the accuracy and efficiency of modeling.
关键词
冲击波压力 /
传感器组件 /
动态特性 /
BP神经网络 /
分段建模
{{custom_keyword}} /
Key words
shock wave pressure /
sensor assembly /
dynamic characteristic /
BP neural network /
segment modeling
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Needham C E. Modeling Blast Waves[M]. Blast Waves. Springer Berlin Heidelberg, 2010: 313-331.
[2] 张志杰. 动态测试的误差分析方法研究[J]. 测试技术学报. 2004, 18 (2): 141-143.
ZHANG Zhi-jie. Research on Error Analysis in Dynamic Measurement [J]. Journal of test and measurement technology. 2004, 18 (2): 141-143.
[3] 何志文. 冲击波超压测试系统动态特性研究[D]. 中北大学, 2014.
HE Zhi-wen. Research on the dynamic characteristics of shock wave testing system [D]. North University of China, 2014.
[4] Srisertplo, Jiraphon. Mathematical model of linear viscoelastic materials using weighting least square method[M]. Proceedings of the IASTED International Conference on Modelling. 2007: p452-457.
[5] 张国梁. 神经网络在测试系统中的非线性建模方法研究及其应用[D]. 中北大学, 2008.
ZHANG Guo-liang. Research and application of the neural network nonlinea modeling in test system [D]. North University of China, 2008.
[6] 夏玫. BP神经网络泛化能力改进研究[D].太原科技大学, 2009.
XIA Mei. Research on improving generalization of BP neural network graduate name [D]. Taiyuan University of Science and Technology, 2009.
[7] 张大有. 激波管在压力传感器动态性能校准和实验上的应用[J]. 宇航计测技术, 2004, 24 (04):24-27.
ZHANG Da-you. The application of shock tube in testing and calibration the performance of pressure sensor [J]. Journal of astronautic metrology and measurement,2004,24(04): 24-27.
[8] Kui Wu, J Harms. Performance study of a multipath routing method for wireless mobile ad hoc networks. Modeling, Analysis and Simulation of Computer and Telecommunication System, Proceedings 9th International Symposium on. 2001.
[9] 王丽, 刘训涛. 基于神经网络的压力传感器标定技术[J]. 煤炭技术, 2006, 07: 109-110.
WANG Li, LIU Xun-tao. Calibration of pressure sensor based on BP network [J]. Coal Technology, 2006, 07: 109-110.
[10] 侯志祥, 李河清, 张玉萍. 基于神经网络的压力传感器数据融合[J]. 传感器技术, 2002, 04: 31-32+36.
HOU Zhi-xiang, LI He-qing, ZHANG Yu-ping. Data fusion of pressure sensor based on neural network [J]. Journal of transducer technology, 2002, 04: 31-32+36.
[11] 苏高利, 邓芳萍. 论基于MATLAB语言的BP神经网络的改进算法[J]. 科技通报, 2003, 02: 130-135.
SU Gao-li, DENG Fang-ping. On the improving backpropagation algrithms of the neural networks based on MATLAB language: a review, 2003, 02: 130-135.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}