基于Hertz理论的泥石流块石冲击力修正系数研究

陈剑1,2.3,王全才1,2,王浩4,陈颖骐1,2,3,李俊1,2,3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (16) : 26-31.

PDF(1205 KB)
PDF(1205 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (16) : 26-31.
论文

基于Hertz理论的泥石流块石冲击力修正系数研究

  • 陈剑1,2.3,王全才1,2,王浩4,陈颖骐1,2,3,李俊1,2,3
作者信息 +

Study on modified coefficient for impact force of boulders conveyed in debris flow based on Hertz theory

  • CHEN Jian1,2,3, WANG Quan-cai1,2, WANG Hao4, CHEN Ying-qi1,2,3, LI Jun1,2,3
Author information +
文章历史 +

摘要

基于Hertz弹性碰撞理论的修正公式是计算泥石流块石冲击力的有效方法之一,但公式中的修正系数目前尚无具体的量化方法。在Hertz接触理论和Thornton弹塑性假设的基础上,建立了泥石流块石冲击构筑物的计算模型,推导了修正系数的表达式。研究表明,修正系数是材料强度、泥石流块石尺寸和速度的函数而非一个常量,其随泥石流块石冲击速度的增加而减小,随泥石流块石半径、构筑物材料强度的增加而增加。板子沟泥石流沟防治工程计算结果显示,修正冲击力仅为Hertz弹性碰撞冲击力的15.58%。当泥石流块石冲击速度小于3m/s,修正系数大于0.20;当泥石流块石冲击速度大于3m/s,修正系数介于0.10~0.20之间,计算结果与实践估计较为一致。

Abstract

Modified formula based on Hertz elastic collision theory is one of the effective methods to calculate Impact Force Exerted by Boulders Transported (IFEBT) in debris flow. However, there is no informative method to quantify modified coefficient currently. Calculation model of IFEBT was built and analytical equation of modified coefficient was deduced on the basis of Hertz contact theory and Thornton elastoplasticity hypothesis. The study showed that modified coefficient is a function material strength, boulder size and velocity rather than constant. The IFEBT decreases with growth of boulder velocity and increases with increment of structure materials strength and boulder size. The modified method was applied to control engineering for Ban Zigou debris flow. Calculation results showed that the modified IFEBT in debris flow is only 15.58% of one’s by Hertz elastic theory. Modified coefficient is larger than 0.2 when boulder velocity is less than 3m/s and ranges between 0.1 and 0.2 when boulder velocity is larger than 3m/s. This new method matches the practice better.

关键词

泥石流 / 块石冲击力 / 修正系数 / Hertz接触力学 / Thornton弹塑性假设

Key words

debris flow / impact force of boulder / modified coefficient / Hertz contact mechanics / Thornton elastoplasticity hypothesis.

引用本文

导出引用
陈剑1,2.3,王全才1,2,王浩4,陈颖骐1,2,3,李俊1,2,3. 基于Hertz理论的泥石流块石冲击力修正系数研究[J]. 振动与冲击, 2017, 36(16): 26-31
CHEN Jian1,2,3, WANG Quan-cai1,2, WANG Hao4, CHEN Ying-qi1,2,3, LI Jun1,2,3. Study on modified coefficient for impact force of boulders conveyed in debris flow based on Hertz theory[J]. Journal of Vibration and Shock, 2017, 36(16): 26-31

参考文献

[1]. ZENG Chao, CUI Peng, SU Zhi-man, et al. Failure modes of reinforced concrete columns of buildings under debris flow impact[J]. Landslides, 2015, 12(3): 561-571.
[2]. 程选生,张爱军,任毅, 等. 泥石流作用下砌体结构的破坏机理和防倒塌措施[J]. 工程力学, 2015, 32(8): 156-163.
CHENG Xuan-sheng, ZHANG Ai-jun, REN Yi, et al. Failure mechanism and anti-collapse measures of masonry structure under debris flow[J]. Engineering Mechanics, 2015, 32(8): 156-163.
Takahashi T. Debris flow: mechanics, prediction and countermeasures[M]. Florida: CRC presss, 2014.
[3]. CHENG Xuan-sheng, WANG Jun-ling, REN-Yi. Fluid–solid interaction dynamic response of masonry structures under debris flow action[J]. European Journal of Environmental & Civil Engineering, 2013, 17(9): 841-859.
Hübl J, Suda J, Proske D, et al. Debris flow impact estimation[C]. 11th international symposium on WMHE,2009: 137-148.
[4]. HE Si- Ming, LIU Wei, LI Xin- Po. Prediction of impact force of debris flows based on distribution and size of particles[J]. Environmental Earth Sciencess, 2016, 75(4): 1-8.
[5]. 于献彬, 陈晓清, 李昆, 等. 复合型拦砂坝受泥石流大块石冲击作用的动力响应[J]. 施工技术, 2015, 44(24): 114-119.
YU Xian-bin, CHEN Xiao-qing, LI Kun, et al. Compound dam dynamic response to the impact of massive stone in debris flow[J]. Construction Technology, 2015 , 44(24): 114-119.
[6]. 胡凯衡, 韦方强, 洪勇, 等. 泥石流冲击力的野外测量[J]. 岩石力学与工程学报, 2006, 25(S1): 2813-2819.
HU Kai-heng, WEI Fang-qiang,, HONG Yong. Field measurement of impact force of debris flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2813-2819.
[7]. 钟敦伦, 谢洪. 泥石流灾害及防治技术[M]. 成都:四川科学技术出版社, 2014.
ZHONG Dun-lun,, XIE Hong. Debris flow hazards and prevention and control technology[M]. Chendu:: Sichuan Science and Technology Press,, 2014.
[8]. 王强, 何思明, 张俊云. 泥石流防撞墩冲击力理论计算方法[J]. 防灾减灾工程学报, 2009, 29(4): 423-427.
WANG Qiang, HE Si-ming, ZHANG Jun-yun. Theoretical method for calculating impact force on debris flow protection piers[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29 (04):: 423-427.
[9]. 何思明, 吴永, 沈均. 泥石流大块石冲击力的简化计算[J]. 自然灾害学报, 2009, 18(5): 51-56.
HE Si-ming, WU Yong, SHEN Jun. Simplified calculation of impact force of massive stone in debris flow[J]. Journal of Natural Disasters, 2009, 18(5): 51-56.
[10]. 章书成,, Hungr O. 泥石流中巨石冲击力计算[A]. 泥石流观测与研究[C]. 北京:: 科学出版社,, 1996: 67-72.
ZHANG Shu-cheng, Hunger O. The calculation of impact force of boulders in debris flow[A]. Debris flow observation and research[C]. Beijing: Science Press,, 1996: 67-72
[11]. WANG Quan-cai, CHEN Jian, WAO Hao, et al. Impact force of boulders conveyed in debris flows on bridge piers and anti- collision measures[J]. International Journal of Geohazards and Environment. 2016, 2 (2), 8-17.
[12]. Thornton C. Coefficient of restitution for collinear collisions of elastic perfectly plastic spheres[J]. Journal of Applied Mechanics, 1997, 64(2):: 383-386.
[13]. 何思明, 李新坡, 吴永. 考虑弹塑性变形的泥石流大块石冲击力计算[J]. 岩石力学与工程学报, 2007, 26(8): 1664-1669.
HE Si-ming, LI Xin-po WU Yong. Calculation of impact force of outrunner blocks in debris flow considering elastoplastic deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (08): 1664-1669.
[14]. Braccesi C, Landi L. A general elastic–plastic approach to impact analisys for stress state limit evaluation in ball screw bearings return system[J]. International Journal of Impact Engineering, 2007, 34(7): 1272-1285.
[15]. Yamaguchi L. Erosion control engineering[M]. Tokyo: Earth Press, 1985, (ISBN: 4-8049-5064-8.).
[16]. Mizuyama T. Evaluation of impact of debris flow on check dams[J]. Journal of the Japan Society of Erosion Control Engineering, 1979, 32(3): 40-49.
[17]. 赖绍文. 含砂水流之梳子坝撞击力试验分析[D]. 台湾: 台湾大学, 2005: 1-16.
LAI Shao-wen. Impact force experiment and analysis of sediment-laden flow on slit dam [D]. Taiwan: Taiwan University,, 2005: 1-16.
[18]. 黄宏斌, 杨凯钧, 赖绍文. 土石流对梳子坝撞击力之研究[J]. 台湾水利, 2006, 55 (1): 41-58.
HUANG Hong-bing,, YANG Kai-jun,, LAI Shao-wen. Impact force of debris flow on filter dam[J]. Journal of Taiwan Water Conservancy,, 2006,, 55(1):41-58.
[19]. Johnson K L. Contact mechanics[J]. Journal of Tribology, 1985, 108(4): 464.
[20]. Raous M, Jean M, Moreau J J. Contact Mechanics[J].  Springer Netherlands, 2009, 108(4): 464-468.
[21]. 周必凡,, 李德基,, 罗德富,, 等. 泥石流防治指南[M]. 北京:: 科学出版社,, 1991.
ZHOU B-ifan,, LI De-ji,, Luo Defu,, et.al. Prevention and control guidelines of debris flow[M]. Bei jing: science press,, 1991.
[22].  Thornton C, NING Ze-min. A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres[J]. Powder Technology, 1998, 99(2): 154-162.
[23]. Vu-quoc L, Lesburg L, ZHANG Xiang. An accurate tangential force–displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation[J]. Journal of Computational Physics, 2004, 196(1): 298-326.
[24]. ZHANG Xiang Z, Vu-quoc L. Modeling the dependence of the coefficient of restitution on the impact velocity in elasto-plastic collisions[J]. International Journal of Impact Engineering, 2002, 27(3): 317-341.
61218

PDF(1205 KB)

Accesses

Citation

Detail

段落导航
相关文章

/