多支承转子系统辛空间传递矩阵法及应用

张娟娟1,崔升1, 冯永新2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (16) : 32-36.

PDF(1733 KB)
PDF(1733 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (16) : 32-36.
论文

多支承转子系统辛空间传递矩阵法及应用

  • 张娟娟1 , 崔升1, 冯永新2
作者信息 +

Transfer matrix method for multi-support rotor system in symplectic space and its application

  • Zhang Juanjuan1,  Cui Sheng1,  Feng Yongxin2
Author information +
文章历史 +

摘要

由变分原理出发,引入对偶变量,将多支承转子系统导入辛体系,推导出转子系统在辛空间中的传递辛矩阵格式,体现了保辛的性质。建立多支承转子系统模型,运用MATLAB对模型进行计算分析,求得固有频率等模态参数,计算结果与有限元方法计算值相吻合。通过与传统方法的计算结果比较证明了该计算方法的有效性。求解得到转子系统各阶临界转速,探讨了支承刚度的改变对转子各阶临界转速的影响,为多支承转子系统的优化设计提供了依据参考。

Abstract

Based on the variational principle, dual variables were introduced, and the multi-support rotor system was imported into symplectic space. Symplectic transfer matrix in symplectic space was presented for the rotor system, it reflect the symplectic conservation property. Model of the rotor system was built, MATLAB was used to analyze this model. Natural frequency and other modal parameters were obtained, and the calculated values were consistent with the values calculated by the finite element method. Effectiveness of the method presented in this paper are confirmed by comparing the results with traditional methods. After large amount of calculations the critical speeds were obtained. The relationship between the critical speeds and support stiffness was studied, it provides reference for the optimization of the rotor system.

关键词

转子系统 / 辛空间 / 传递矩阵 / 应用

Key words

rotor system / symplectic space / transfer matrix / application

引用本文

导出引用
张娟娟1,崔升1, 冯永新2. 多支承转子系统辛空间传递矩阵法及应用[J]. 振动与冲击, 2017, 36(16): 32-36
Zhang Juanjuan1, Cui Sheng1, Feng Yongxin2. Transfer matrix method for multi-support rotor system in symplectic space and its application[J]. Journal of Vibration and Shock, 2017, 36(16): 32-36

参考文献

[1]  孟光. 转子动力学研究的回顾与展望[J]. 振动工程学报, 2002, 15(01): 5-13.
        Meng Guang. Retrospect and prospect to the research on rotor dynamics[J]. Journal of Vibration Engineering, 2002, 15(01): 5-13.
[2]   杨永锋, 任兴民, 徐斌. 国外转子动力学研究综述[J]. 机械科学与技术, 2011, 30(10): 1775-1780.
Yang Yong-feng, Ren Xing-min, Xu Bin. Review of international researches on rotor dynamics[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(10): 1775-1780.
[3]   徐小明, 钟万勰. 转子动力学的非线性数值求解[J]. 应用数学和力学, 2015,  36(07): 677-685.
Xv Xiao-ming, Zhong Wan-xie. Nonlinear numerical simulation of rotor dynamics[J]. Applied Mathematics and Mechanics, 2015,  36(07): 677-685.
[4]   李强, 马龙, 许伟伟, 等. 椭圆轴承-转子耦合系统动力学特性研究[J]. 振动与冲击, 2016,35(11): 174-179.
Li Qiang, Ma Long, Xv Wei-wei, et al. Dynamic characteristics analysis of an elliptical bearing-rotor coupled system[J]. Journal of  Vibration and Shock, 2016,35(11): 174-179.
[5]  Kim J S, Lee S H. The stability of active balancing control using influence coefficients for a variable rotor system[J]. International Journal of Advanced Manufacturing Technology, 2003, 22(7-8): 562-567.
[6]   张文. 转子动力学理论基础[M]. 北京: 科学出版社, 1990.
Zhang Wen. Basic theory of  rotary dynamics[M]. Beijing: Science Press,1990.
[7]  何洪军, 荆建平. 非线性转子-密封系统动力学模型研究[J]. 振动与冲击, 2014, 33(10): 73-76.
He Hong-jun, Jing Jian-ping. Dynamic model of a nonlinear rotor-seal system[J]. Journal of  Vibration and Shock, 2014, 33(10): 73-76.
[8]    Kim T, Na S. New automatic ball balancer design to reduce transient-response in rotor system[J]. Mechanical Systems and Signal Processing, 2013, 37(1-2SI): 265-275.
[9]   Behzad M, Alvandi M, Mba D, et al. A finite element-based algorithm for rubbing induced vibration prediction in rotors[J]. Journal of Sound and Vibration, 2013, 332(21): 5523-5542.
[10]  钟一谔,何衍宗,王正,等. 转子动力学[M]. 北京: 清华大学出版社, 1987.
Zhong Yi-e, He Yan-zong, Wang Zheng, et al. Dynamics of rotor[M]. Beijing: Tsinghua University  Press, 1987.
[11]   袁惠群. 复杂转子系统的矩阵分析方法[M]. 沈阳: 辽宁科学技术出版社, 2014.
Yuan Hui-qun. Matrix analysis method for complex rotor system[M]. Shen Yang: Liaoning Science and Technology Publishing House,2014.
[12]   钟万勰. 经典力学辛讲[M]. 大连: 大连理工大学出版社, 2013.
           Zhong Wan-xie. Classical Mechanics: Its Symplectic Description[M]. Dalian: Dalian University of  Technology Press,2013.
[13]  隋永枫. 转子动力学的求解辛体系及其数值计算方法[D]. 大连理工大学, 2006.
Sui Yong-feng. A symplectic systematic methodology for rotor dynamics and the corresponding numerical computational methods[D]. Dalian University of  Technology, 2006.
[14] 隋永枫, 高强, 钟万勰. 陀螺系统时间有限元方法[J]. 振动与冲击, 2012, 31(13): 95-98.
Sui Yong-feng, Gao Qiang, Zhong Wan-xie. Time domain finite element method for gyroscopic systems[J]. Journal of Vibration and Shock, 2012, 31(13): 95-98.
[15]  Timoshenko S. 材料力学[M]. 北京: 科学出版社, 1978.
Timoshenko S. strength of materials[M].Beijing: Science Press, 1978.
[16]  陈锡栋, 杨婕, 赵晓栋, 等. 有限元法的发展现状及应用[J]. 中国制造业信息化, 2010, 39(11): 6-8.
Chen Xi-dong, Yang Jie, Zhao Xiao-dong, et al. The status and development of finite element method[J]. Machine Design and Manufacturing Engineering, 2010, 39(11): 6-8.
[17] 孙海霞, 戴京涛, 姜伟, 等. 有限元法在机械工程中的应用与发展[J]. 科技创新导报, 2011(03): 84.
Sun Hai-xia, Dai Jing-tao, Jiang Wei, et al. Application and development of finite element method in Mechanical Engineering[J]. Science and Technology Innovation Herald, 2011(03): 84.
 

PDF(1733 KB)

Accesses

Citation

Detail

段落导航
相关文章

/