复合载荷作用下钻头冲击破岩机理研究及现场应用

李思琪1 李 玮1 闫 铁1 高晗2 毕福庆3 马红滨4

振动与冲击 ›› 2017, Vol. 36 ›› Issue (16) : 51-55.

PDF(1886 KB)
PDF(1886 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (16) : 51-55.
论文

复合载荷作用下钻头冲击破岩机理研究及现场应用

  • 李思琪1  李  玮1  闫  铁1  高晗2 毕福庆3  马红滨4
作者信息 +

Research on rock breaking mechanism of drill bit under combined load and field application

  • LI Siqi1   LI Wei1   YAN Tie1   GAO Han2  BI Fu-qing2  MA Hongbin4
Author information +
文章历史 +

摘要

复合载荷冲击破岩作为新的高效破岩技术之一可以解决复杂难钻地层机械钻速缓慢、钻具失效严重等问题。本文基于弹性力学和冲击力学理论,建立了复合载荷作用下压头的破岩模型,分析了模型因素对压头侵深的影响。同时,应用有限元软件分析了复合载荷作用下岩石位移和应力的响应。最后通过现场应用进一步证明复合载荷冲击破岩的提速效果。理论研究结果表明:该破岩方法可以在保证钻深基础上,减少钻具失效;同时还扩大了岩石的响应范围和载荷的作用区域,加剧了岩石振动的剧烈程度;当激励频率与岩石固有频率相同或接近时,岩石产生共振,整体振动位移达到峰值。现场应用效果表明:高频低幅轴向冲击工具应用井段平均机械钻速可达3m/h,与常规钻具相比,平均提速可达67.65%。

Abstract

Impacting rock under combined load as one of efficient rock breaking technology, can solve the drilling problem of complex hard formation, such as slow drilling rate, serious drilling tool failure. Based on the theories of elastic mechanics and impact mechanics, rock breaking model of indenter is proposed and the effects of factors on the invasion depth are studied. Also, finite element software is used to analyze the response of displacement and stress of rock. At last, the effect of increasing speed under the impacting of combined load is proved further through field application. Results of theoretical research show that: the technology not only can guarantee the invasion depth, but also can reduce the drilling tool failure. It also can expand the response range of rock and the working area of loads and increase the intensity of rock vibration. When the excitation frequency is the same as or is close to the natural frequency of rock, the rock will be resonant and the vibration displacement is the largest. Effects of field application show that: the average of drilling rate of high-frequency low-amplitude axial impact tool is 3m/h, it is increased of 67.65% compared with conventional drilling tool.
 

关键词

复合载荷 / 冲击作用 / 侵深 / 破岩效率 / 现场应用

Key words

Combined load / impacting / invasion depth / rock breaking efficiency / field application

引用本文

导出引用
李思琪1 李 玮1 闫 铁1 高晗2 毕福庆3 马红滨4. 复合载荷作用下钻头冲击破岩机理研究及现场应用[J]. 振动与冲击, 2017, 36(16): 51-55
LI Siqi1 LI Wei1 YAN Tie1 GAO Han2 BI Fu-qing2 MA Hongbin4. Research on rock breaking mechanism of drill bit under combined load and field application[J]. Journal of Vibration and Shock, 2017, 36(16): 51-55

参考文献

[1] 邹德永,曹继飞,袁军,等. 碳酸盐岩地层抗钻特性预测方法研究及应用[J]. 岩石力学与工程学报,2011,30(2):3851-3856.
ZOU De-ying, CAO Ji-fei, YUAN Jun, et al. Research on application of predicting anti-drilling parameters of carbonate formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 3851-3856.
[2] 王清峰,朱才朝,宋朝省,等. 牙轮钻头单牙轮的破岩仿真研究[J]. 振动与冲击,2010,29(10):108-112.
WANG Qing-feng, ZHU Cai-chao, SONG Chao-sheng, et al. Nonlinear dynamic analysis of a roller cone bit well rock system with rock cone bit interaction[J]. Journal of Vibration and Shock, 2010, 29(10): 108-112.
[3] 祝效华,汤历平,童华. 高频扭转冲击钻进的减振与提速机理研究[J]. 振动与冲击,2012,31(20):75-78.
ZHU Xiao-hua, TANG Li-ping, TONG Hua. Rock breaking mechanism of a high frequency torsional impact drilling [J]. Journal of Vibration and Shock, 2012, 31(20): 75-78.
[4] 伍开松,荣明,李德龙,等. 双粒子联合冲击破岩仿真研究[J]. 岩土力学,2009,30:19-23.
WU Kai-song, RONG Ming, LI De-long, et al. Simulation study of impacting breaking rock by double particle [J]. Rock and Soil Mechanics, 2009, 30: 19-23.
[5] 赵健,徐依吉,邢雪阳,等. 脆性岩石粒子冲击理论模型与实验[J]. 中国矿业大学学报,2014,43(6):1108-1112.
ZHAO Jian, XU Yi-ji, XING Xue-yang, et al. A theoretical model and experiment of brittle rock impacted by particles[J]. Journal of China University of Mining & Technology, 2014, 43(6):1108-1112.
[6] 程宇雄,李根生,王海柱,等. 超临界二氧化碳喷射压裂井筒流体相态控制[J]. 石油学报,2014,35(6):1182-1187.
CHENG Yu-xiong, LI Gen-sheng, WANG Hai-zhu, et al. Phase control of wellbore fluid during supercritical CO2 jet fracturing[J]. Acta Petrolei Sinica, 2014, 35(6): 1182-1187.
[7] 杜玉昆,王瑞和,倪红坚等. 超临界二氧化碳射流破岩试验[J]. 中国石油大学学报( 自然科学版),2012,36(4):93-96.
DU Yu-kun, WANG Rui-he, NI Hong-jian, et al. Rock-breaking experiment with supercritical carbon dioxide jet[J]. Journal of China University of Petroleum, 2012, 36(4): 93-96.
[8] 司鹄,薛永志. 基于SPH算法的脉冲射流破岩应力波效应数值分析[J]. 振动与冲击,2016,35(5):146-152.
SI Hu, XUE Yong-zhi. Numerical analysis for stress wave effects of rock broken under pulse jets [J]. Journal of Vibration and Shock, 2016, 35(5): 146-152.
[9] LI Wei,YAN Tie,LI Si-qi,et al.Rock fragmentation mechanisms and an experimental study of drilling tools during high-frequency harmonic vibration[J]. Petroleum Science, 2013, 10(2):205-211.
[10] 李思琪,闫铁,王希军,等. 基于最小作用量原理的岩石微振动方程及分析[J]. 石油钻探技术,2014,42(3):66-70.
LI Si-qi, YAN Tie, WANG Xi-jun, et al. The micro vibration equation of rock and its analysis basing on the principle of least action[J]. Petroleum Drilling Techniques, 2014,42(3): 66-70.
[11] LI Si-qi, YAN Tie, LI Wei, et al. Modeling of vibration response of rock by harmonic impact[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 90-96.
[12] 杨威,李磊,赵延旭,等. 共振碎岩理论的初步探究[J]. 能源技术与管理,2007,4:7-9.
YANG Wei, LI Lei, ZHAO Yan-xu, et al. Preliminary inquiry of theory of resonance rock breaking[J]. Energy Technology and Management. 2007, 4: 7-9
[13] WIERCIGROCH M. Resonance enhanced drilling: method and apparatus. US Patent: 2010/ 319994, 23 December 2010.
[14] EKATERINA P, DAVID C H, MARIAN W. Modelling of high frequency vibro-impact drilling[J]. International Journal of Mechanical Sciences, 2013.
[15] 廖志毅,梁正召,唐春安,等. 动静组合作用下刀具破岩机制数值分析[J]. 岩土力学,2013,34(9):2682-2689.
LIAO Zhi-yi, LIANG Zheng-zhao, Tang Chun-an, et al. Numerical simulation of rock fracture mechanism induced by a drill bit under combined dynamic and static loading [J]. Rock and Soil Mechanics, 2013, 34(9): 2682-2689.
[16] 赵伏军, 李夕兵,冯涛,等. 动静载组合破碎脆性岩石试验研究[J]. 岩土力学,2005,26(7):1038-1042.
ZHAO Fu-jun, LI Xi-bing, FENG Tao, et al. Research on experiments of brittle rock fragmentation by combined dynamic and static loads[J]. Rock and Soil Mechanics, 2005, 26(7): 1038-1042.
[17] LOVE, A E. Treatise on the Mathematical Theory of Elasticity[M]. UK, Cambridge: A Cambridge University Press, 1906.
[18] STRONGE, W J. Impact Mechanics [M]. UK, Cambridge: Cambridge University Press, 2000.
[19] O.K. Ajibose, M. Wiercigroch, E. Pavlovskaia, et al. Drifting impact oscillator with a new model of the progression phase[J]. Journal of Applied Mechanics, 2012, 79(6): 1-9.

PDF(1886 KB)

Accesses

Citation

Detail

段落导航
相关文章

/