Take a hydraulic-mechanical coupling system of industrial field hot strip tandem mill as the research object, a vibration control method which is put forward to optimize control parameters based on an dual target of improved particle swarm optimization. First the hydraulic-mechanical coupling system dynamic model is established, and takes the best system response index and the weakest vibration intensity as the objective function, to optimize the hydraulic pressure system control parameter and obtain the optimal control parameters. The relation curve of the control parameters with the vibration acceleration effective value and dynamic response are described using a numerical analysis method. The simulation results show that the system dynamic response index cannot meet the requirements with minimum vibration, and the system dynamic response index is optimal while system vibration is strong. Finally the results of optimization are applied to the industrial field mill; it proves that the adjustment control parameters of the hydraulic pressure down system can effectively alleviate system vibration, which provided effective solution to curb hot strip tandem mill vibration.
Ling Qi-hui Zhao Qian-cheng Wang Xian Wang Xiao-fen .
Control Parameters Optimization of Hydraulic-mechanical Coupling System of Hot Strip Tandem Mill[J]. Journal of Vibration and Shock, 2017, 36(16): 73-78
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PENG K X,ZHANG K,DONG J,et al.A New Data-driven Process Monitoring Scheme for Key Performance Indictors with Application to Hot Strip Mill Process[J].Journal of Franklin Institute,2014,351(09):4555-4569.
[2] Kapil S,Eberhard P,Dwivedy,et al.Nonlinear Dynamic Analysis of a Parametrically Excited Cold Rolling Mill[J].Journal of Manufacturing Science & Engineering,2014,136(04):10-19.
[3] 闫晓强.热连轧机机电液耦合振动控制[J].机械工程学报,2011,47(17):61-65.
YAN Xiao-qiang.Machinery-electric-hydraulic Coupling Vibration Control of Hot Continuous Rolling Mills [J].Journal of Mechanical Engineering,2011,47(17):61-65.
[4] 高峰,郭为忠,宋清玉,等.重型制造装备国内外研究与发展[J].机械工程学报,2010,46(19):92-107.
Gao Feng,Guo Wei-zhong,Song Qing-yu,et al.Current Development of Heavy-duty Manufacturing Equipments [J].Journal of Mechanical Engineering,2010,46(19):92-107.
[5] 姚爱英,熊晓燕,王然风,等.大型带钢轧机动态特性分析与动力学修改[J].振动、测试与诊断,2012,34(04):680-684.
Yao Aiying,Xiong Xiaoyan,Wang Ranfeng,et al.Dynamic Performance Analysis and Dynamics Modification of Large Strap Rolling Mills[J].Journal of Vibration, Measurement &Diagnosis,2012,34(04):680-684.
[6] 凌启辉,闫晓强,张清东,等.双动力源驱动下的热连轧机振动特征[J].振动测试与诊断,2014,34(03):534-538.
Ling Qi-hui,Yan Xiao-qiang,Zhang Qing-dong,et al.Research on vibration characteristics of the hot rolling mill by dual power source driven[J].Journal of Vibration,Measurement & Diagnosis,2014,34(03):534-538.
[7] Panjković R V,Gloss J,Steward S,et al.Causes of Chatter in a Hot Strip Mill:Observations,Qualitative Analyses and Mathematical Modeling[J].Journal of Materials Processing Technology,2012,212(04):954-961.
[8] Yan Xiao-qiang,SUN Zhi-hui,Chen Wei.Vibration control in thin slab hot strip mills[J].Iron making and Steelmaking,2011,38(4):309-313.
[9] 韩东颖,时培明,赵东伟,等.板带轧机机电传动系统参激非线性扭振鲁棒控制研究[J].振动与冲击,2016,35(12):1-7.
HAN Dong-ying,SHI Pei-ming,ZHAO Dong-wei,et al.Study on robust control for parametric excitation nonlinear torsional vibration of a strip-rolling mill's mechanical and electrical drive system[J].Journal of Vibration and Shock,2016,35(12):1-7.
[10] SUN jie,ZHANG Dian-hua,LI Xu,et al.Smith Prediction Monitor AGC System Based on Fuzzy Self-Tuning PID Control[J].Journal of Iron and Steel Research.2010,17(02):22-26.
[11] Shufang Sun,Jiahai Zhang,Jianhui Wang,et al.The Application of New Adaptive PSO in AGC and AFC Combination Control System[C]//International Workshop on Automobile,Power and Energy Engineering:Procedia Engineering,2011,16:702 – 707.
[12] LI Xu,ZHANG Hao-yu,ZHANG Jin,et al.Influences to System and Superiority of Model Parameters in Dynamic Setting AGC[C]// 2011 International Conference on Physics Science and Technology (ICPST 2011):Physics Procedia,2011,22:565-570.
[13] 马维金,李凤兰,王俊元,等.热连轧机磁栅尺结构的模型参数辨识[J].振动、测试与诊断,2010,30(06):646-649+709.
Ma Wei-jin,Li Feng-lan,Wang Jun-yuan,et al.Modeling System Identification of Roller Gap Displacement Sensor Structure of Hot Rolling Mill[J].Journal of Vibration,Measurement &Diagnosis,2012,30(06):646-650+709.
[14] 凌启辉.现代热连轧机液机耦合振动研究[D].北京科技大学,2014,38-74.
Ling Qi-hui.Mechanical-hydraulic coupling vibration of modern hot continuous rolling mill [D].University of Science and Technology Beijing,2014,38-74.
[15] Kanchana S,Woraya N.Multi-objective particle swarm optimization for mechanical harvester route planning of sugarcane field operations[J].European Journal of Operational Research,2016,252(03):969-984.
[16] 王唯一,张明泉,杨帆,陈次祥.基于粒子群算法的PID调速系统的研究[J].控制工程,2015,22(06):1082-1086.
Wang Wei-yi,Zhang Ming-quan,Yang Fan,et al.Study of PID Speed Controller Based on Particle Swarm Optimization.Control Engineering of China,2015,22(06):1082-1086.
[17] 陈玲娟,蒲云.基于粒子群算法的双目标可靠性网络设计[J].交通运输工程学报,2010,05:61-65.
Chen Ling-juan,Pu Yun.Dual-objective reliable network design based on particle swarm optimizationJournal of Traffic and Transportation Engineering,2010,05:61-65.
[18] 侯磊.基于多目标粒子群算法的船舶主尺度优化设计研究[J].船舶力学,2011,15(07):784-790.
Hou Lei.Application of Multi-objective Particle Swarm Optimization(MOPSO) in study of ship’s principal parameters[J].Journal of Ship Mechanics,2011,15(07):784-790.