大跨悬索桥吊索阻尼比影响因素分析

李胜利1,张帅1,王东炜1,欧进萍2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (16) : 79-84.

PDF(947 KB)
PDF(947 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (16) : 79-84.
论文

大跨悬索桥吊索阻尼比影响因素分析

  • 李胜利1,张帅1,王东炜1,欧进萍2
作者信息 +

Analysis of Factors Influencing Galloping on Straddle Sling damping ratio of Long-Span Suspension Bridge

  •   LI Sheng-l 1   ZHANG Shuai 1  WANG Dong-wei 1  OU Jin-ping 2
Author information +
文章历史 +

摘要

确定大跨悬索桥吊索的阻尼比及其影响因素是设计中的难点,且目前吊索流固耦合二维数值计算中吊索阻尼比取值的实际工程意义不太明确,为了利用二维流固耦合计算实际工程中吊索的风振特性,其中吊索断面刚度和阻尼的取值至关重要,为了研究吊索断面的阻尼特性,采用自由振动衰减法和有限元方法分析了吊索初始张力、长度、直径、风速、约束条件以及吊索位置对吊索阻尼比的影响。结果表明:吊索阻尼比随其初始张力的增大而增大,吊索阻尼比随其直径和长度的增大而减小;吊索阻尼比随风速的变化而变化;吊索两端为固定端约束时的阻尼比大于吊索两端为固定铰约束是的阻尼比;吊索的跨中阻尼比最小,从跨中向两端吊索阻尼比逐渐增大。因此在吊索流固耦合计算时,吊索阻尼比的取值随吊索初始张力、长度、直径、风速、约束条件以及吊索位置的不同而不同。

Abstract

The definition of galloping on straddle sling damping ratio of long-span suspension bridge and its influencing factors analysis is the key problems encountered in the design, and at the moment, the sling damping ratio of practical engineering significance in sling two-dimensional fluid-structure interaction is uncertain. To take advantage of the two-dimensional fluid-structure coupling calculation of wind vibration characteristics of sling in practical engineering, In which the stiffness and damping ration of the sling section is important,in order to study the damping characteristics of the sling section, useing free damped vibration and finite element method analysis the influence of the sling damping ratio when sling initial tension,length,diameter,wind speed,constraints and sling position changes.The conclusions are drawn as follows: When the initial tension of sling are increasing, its damping ratio will increase, When the diameter and length of sling are increasing, its damping ratio will decrease . The damping ratio of sling is affected by wind speed. Comparing with the two ends of hinge constraint, the two ends of fixed constraint will be more beneficial to increase the damping ratio of sling. The damping ratio in the middle of sling is smallest. From the middle to the end, the damping ratio of sling is gradually increasing.Therefore,calculating sling Fludi-Solid Coupling,the value of sling damping ratio differ depending on sling initial tension,length,diameter,wind speed,constraints and sling position..

关键词

悬索桥 / 吊索 / 自由振动 / 位移时程 / 阻尼比 / 有限元法 / 流固耦合

Key words

suspension bridge / sling / free damped vibration / displacement time history / damping ratio / finite element method / fluid-structure interaction

引用本文

导出引用
李胜利1,张帅1,王东炜1,欧进萍2. 大跨悬索桥吊索阻尼比影响因素分析[J]. 振动与冲击, 2017, 36(16): 79-84
LI Sheng-l 1 ZHANG Shuai 1 WANG Dong-wei 1 OU Jin-ping 2. Analysis of Factors Influencing Galloping on Straddle Sling damping ratio of Long-Span Suspension Bridge[J]. Journal of Vibration and Shock, 2017, 36(16): 79-84

参考文献

[1] 于开平,邹经湘,庞世伟. 结构系统模态参数识别方法研究进展[J]. 世界科技研究与发展,2005,27(6):22-30.
YU Kai-ping, ZOU Jing-xiang,PANG Shi-wei. Research advance of modal parameter indentification medthod for structural system[J]. Journal of World Sci-tech R.& D.,2005,27(6):22-30.
[2] 张淼,于澜,鞠伟. 基于频响函数矩阵计算阻尼系统动力响应的新方法[J]. 振动与冲击,2014,33
(4):161-166.
ZHANG Miao,YU Lan,JU Wei. A new method for computing dynamic response of a damped linear system based on frequency response function matrix [J]. Journal of Vibration and Shock,2014,33(4):161-166.
[3] 王慧,刘正士. 一种识别结构模态阻尼比的方法[J]. 农业机械学报,2008,39(6):201-202.
WANG Hui, LIU Zheng-shi. A method indentification of structural damping ratios[J]. Journal of Transactions of the Chinese Society for Agricultural Machinery,2088,39(6):201-202.
[4] 赵晓丹,徐俊杰,王西富. 利用分段积分识别阻尼比研究[J]. 振动与冲击,2015,34(20):109-114.
ZHAO Xiao-dan,XU Jun-jie,WANG Xi-fu,method for damping identification using piecewise integral[J]. Journal of Vibration and Shock,2015,34(20):109-114.
[5] 李周,危媛丞.考虑吊索二阶模态的参数振动及其影响因素分析[J]. 华南理工大学学报(自然科学版),2013,41(2):94-100.
LI Zhou, WEI Yuan-cheng, Parametric Vibration and Corresponding Impact Parameters Analysis of Suspender Cable Considering the First Two Order Modals[J]. Journal of South China University of Technologe(Natural Science Edition), 2013,41(2):94-100.
[6] 许福友,丁威,姜峰.大跨度桥梁涡激振动研究进展与展望[J]. 振动与冲击,2010,29(10):40-49.
XU Fu-You, DING Wei, JIANG Feng, Development and prospect of study on vortex-induced vibration of long-span bridges[J]. Journal of Vibration and Shock, 2010, 29(10):40-49.
[7] Al-Jamal H and Dalton C. Vortex Induced Vibrations Using Large Eddy Simulation at aModerate Reynolds Number[J]. Journal of Fluids and Structures,2004,19:73-92.
[8] Guilmineau E. And Queutey P. Numerical simulations in vortex-induced vibrations at low mass-damping[J]. AIAA paper number,2001-2852,Anaheim,2001
[9] 徐枫,欧进萍. 方柱非定常绕流与涡激振动的数值模拟[J]. 东南大学学报,2005,35(1),35-39.
XU Feng, Ou JinPing. Numerical simulation of unsteady flow around square cylinder and vortex-induced bibration[J]. Journal of Southeast Univerdity(Natural Scievce Editon), 2005,35(1):35-39.
[10] 陈文礼,李惠. 基于RANS的圆柱风致涡激振动的CFD数值模拟[J]. 西安建筑科技大学学报,38(4):509-513.
CHEN Wen-Li,LI Hui. CFD numerical simulation of vortex-induced vibration of a circular cylinder based on a RANS methed[J]. Journal of Xi’an University of Architecture&Technology(Natural Science Editon),38(4):509-513.
[11] Collins, J.D.,Young, J.P., and Kiefling, L.A., Methods and applications of System Identification in Shock and Vibration. System Identification of Vibrating Structures. Mathematical Models from Test Data, American Society of Mechanical Engineers, New York, N. Y., 1972.
[12] Clough, R. w., and Penzien, J.,Dynamics of structures, McGraw-Hill, New York, 1975.
[13] Hart, G. C., Lew, M., and Dijulio, R. M., High-rise Building Response:Damping and period nonlinearities, Proc., Fifth World Conf. on Earthquake Engrg. Rome, Italy,1973.
[14] 黄宗明, 白绍良,赖明. 结构地震反应时程分析中的阻尼问题评述[J]. 地震工程与工程振动,1996,16(2):95-105.
HUANG Zongming, BAI Shaoliang, LAI Ming. Review on the damping in earthquake response time-history analysis of structures[J], Earthquake Engineering And Enginering Vibration,1996,16(2):95-105.
[15] Newmark,N. M.,and Hall, W.J., Scismic Design Criteria for Nuclear Reactor Facilities. Proc., Fourth World Conf. on Earthquake Engrg., Santiago, Chile, 1969.
[16] 梁超锋,欧进萍. 结构阻尼与材料阻尼的关系[J]. 地震工程与工程振动,2006,26(1):49-55.
LIANG Chaofeng, OU Jinping. Relationship between structural damping and material Damping[J]. Earthquake Engineering And Enginering Vibration,2006,26(1):49-55.
[17]陈奎孚,张森文. 半功率点法估计阻尼的一种改进[J]. 振动工程学报,2002,15(2):151-155.
CHEN Kuifu, Zhang Senwen. Improvement on the damping Estimation by half power point method[J]. Journal of Vibration Engineering, 2002,15(2):151-155.
[18] 周海俊,孙利民,时晨. 摩擦型阻尼器的斜拉索减振实验研究[J]. 同济大学学报(自然科学版), 2006,34(7):864-868..
ZHOU Haijun, SUN Limin, SHI Chen. A full-scale experimental study on cable vibration mitigation with friction damper[J]. Journal of Tongji University(Natural Science), 2006,34(7):864-868.
[19] 巫振弘,薛彦涛,王翠坤. 多遇地震作用下消能减震结构附加阻尼比计算方法[J]. 建筑结构学报,34(12):19-25.
WU Zhenhong, XUE Yantao, WANG Cuikun. Research on additional damping ratio calculation methods under frequent earthquake[J]. Journal of Building Structures, 34(12):19-25.
[20] 李周. 大跨度悬索桥悬吊体系参数振动研究[D]. 广州:华南理工大学,2013.
LI  Zhou. The research on parametric vibration of suspended  system of  large-span suspension bridge[D]. Guangzhou.:South China University of Technology
[21] JTG/T D60-01-2004 公路桥梁抗风设计规范[S].
JTG/TD60-01-2004 Wind-resistent Design Specification for Highway Bridges[S].

PDF(947 KB)

Accesses

Citation

Detail

段落导航
相关文章

/