[1] 唐宏宾, 吴运新, 滑广军等. 基于EMD包络谱分析的液压泵故障诊断方法[J]. 振动与冲击, 2012, 31(9): 44-48.
Tang Gui-ji, Wu Yun-xin, Hua Guang-jun, et al. Fault diagnosis of pump using EMD and envelope spectrum analysis[J]. Journal of Vibration and Shock, 2012, 31(9): 44-48.
[2] Huang N. E., Shen Zheng, Long S. R., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]// Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. London: The Royal Society, 1998. 903-995.
[3] Huang, N. E., Wu Man-li, Qu Wen-dong, et al. Applications of Hilbert-Huang transform to non-stationary financial time
series analysis[J]. Applied Stochastic Models in Business and
Industry, 2003, 19(3): 245-268.
[4] Wu Zhaohua, Huang N. E.. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J].
Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[5] Ryan D, Kaiser J. F.. The use of a masking signal to improve empirical mode decomposition[C]// International Conference on Acousic, Speech and Signal Processing 2005 IEEE. M A, USA : MIT Press, 2005: 485-488.
[6] 赵玲, 刘小峰, 秦树人等. 消除经验模态分解中混叠现象
的改进掩膜信号法[J]. 振动与冲击, 2010, 29(9): 13-17.
ZHAO Ling, LIU Xiao-feng, QIN Shu-ren, et al. Use of masking signal to improve empirical modede composition[J]. Journal of Vibration and Shock, 2010, 29(9): 13-17.
[7] Hassanpour, H., Zehtabian, A.. Time domain signal enhancement based on an optimized singular vector denoising algorithm[J]. Digital Signal Processing, 2012, 22(5): 786-794.
[8] 刘鎏, 闫云聚, 李鹏博. 奇异谱分解在超声速无人机声振试验数据处理中的应用[J]. 振动与冲击, 2015, (03): 28-34.
LIU Liu, YAN Yun-ju, LI Peng-bo. Singular value spectral decomposition and its application in acoustic vibration test data processing of a supersonic aircraft[J]. Journal of Vibration and Shock, 2015, 34(3): 28-34.
[9] 刘敏, 张英堂, 李志宁等. 基于自适应奇异值标准谱和 EMD 的柴油机故障诊断[J]. 车用发动机, 2015, (2): 77-82.
LIU Min, ZHANG Ying-tang, Li Zhi-ning, et al. Diesel engine fault diagnosis based on adaptive sigular value stantard spectrum and empirical mode decomposition[J]. Vehicle Engine, 2015, 27(2): 77-82.
[10] 王超, 孔凡让, 黄伟国等. 改进的奇异值分解在轴承故障诊断中的应用[J]. 振动工程学报, 2014, 27(2): 296-303.
WANG Chao, KONG Fan-rang, HUANG Wei-guo, et al. Application of improved singular value decompostion in bearing fault diagnosis[J]. Journal of Vibration Engineering, 2015, (2): 77-82.
[11] 胥永刚, 谢志聪, 孟志鹏等. 基于奇异值分解的磁记忆信号特征提取方法[J]. 振动、测试与诊断, 2014, 34(6): 1105-1109.
XU Yong-gang, XIE Zhi-cong, MENG Zhi-peng, et al. Feature extraction method of magnetic memory signal based on SVD[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(6): 1105-1109.
[12] 徐彦凯, 双凯. 自适应奇异值分解瞬变信号检测研究[J]. 电子与信息学报, 2014, 36(3): 583-588.
XU Yan-kai, SHUANG Kai. Detection of transient signal based on adaptive singular value decomposition[J]. Journal of Electronics & Information Technology, 2014, 34(6): 1105-1109.
[13] 赵学智, 叶邦彦, 陈统坚. 奇异值差分谱理论及其在车床主轴箱故障诊断中的应用[J]. 机械工程学报, 2010, 46(01): 100-108.
ZHAO Xue-zhi, YE Bang-yan, CHEN Tong-jian. Difference spectrum theory of singular value and its application to the fault diagnosis of headstock of lathe[J]. Journal of Mechanical Engineering, 2010, 46(01): 100-108.
[14] 钱征文, 程礼, 李应红. 利用奇异值分解的信号降噪方法[J]. 振动、测试与诊断, 2011, 31(4): 459-463.
QIAN Zheng-wen, CHENG Li, LI Ying-hong. Noise reduction method based on singular value decomposition[J]. Journal of Vibration, Measurement & Diagnosis, 2011, 31(4): 459-463.