基于CEEMD和小波包阈值的组合降噪及泄流结构的模态识别方法

胡剑超,练继建,马斌,董霄峰

振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 1-9.

PDF(1540 KB)
PDF(1540 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 1-9.
论文

基于CEEMD和小波包阈值的组合降噪及泄流结构的模态识别方法

  • 胡剑超 ,练继建 ,马斌 ,董霄峰
作者信息 +

An compound de-noising and modal identification method based on CEEMD and Wavelet Packet Threshold for flood discharge structure

  • Hu Jian-chao,  Lian Ji-jian,  Ma Bin, Dong Xiao-feng
Author information +
文章历史 +

摘要

水流荷载激励下,泄流结构模态识别的实测振动信号常受噪声干扰。以往EEMD算法有添加白噪声造成非标准IMF导致的模态分裂问题及IMF有噪声残余不能完整重构信号的完备性问题。而完备总体经验分解法(CEEMD),通过在信号分解的每一层面添加特定高斯白噪声,利用分解后第一阶分量加总平均得到唯一余量计算固有模态函数,克服了EEMD的缺点。同时提出CEEMD与小波包阈值结合的组合降噪方法,运用到向家坝水弹性模型实测振动信号降噪中,验证了该组合方法降噪的有效性。为了提高带噪振动响应模态识别的精度,基于数据相关技术,利用Markov参数构造相关矩阵R,用该相关矩阵重构Hankel矩阵后SVD分解得到系统最小实现,即数据相关特征系统实现法(ERA/DC)。最后将文中提出的滤波降噪结合模态识别的整套方法,应用到锦屏一级拱坝的泄流实测振动响应中,得到了较好的应用效果。

Abstract

The vibration signal of flood discharge under water load excitation using for modal identification is often affected by noise. EEMD algorithm has the problem that caused by adding white noise, which leads to the non-standard IMF that causes the modal split and the incompletely reconstructed original signal on account of the residual noise. While Complete Ensemble Empirical Mode Decomposition (CEEMD), by adding the specific white noise to each stage of signal decomposition, uses the first component and adds the average to get the unique residual, which let the IMF overcome the drawbacks of EEMD. According to the record of the experiment which de-noised the vibration signal from Xiangjiaba hydroelastic model, the effectiveness of method based on CEEMD and wavelet packet transform has been proved. In order to improve the precision of modal identification with vibration response mixed noise, this paper, based on the data correlation technology, uses the Markov parameter structure correlation matrix R and SVD the Hankel matrix restricted by R to get minimum system realization, which is also called by Eigensystem Realization Algorithm With Data Correlation (ERA/DC). Finally, the filtering and mode identification method mentioned in the paper is applied to the vibration response analysis of Jinping arch dam, which obtains the good application effect.

 

关键词

泄流结构 / 滤波降噪 / 完备总体经验模态分解 / 小波包 / 模态识别 / 相关特征系统实现法

Key words

 flood discharge structure / noise reduction / CEEMD / Wavelet packet / Modal identification / ERA/DC

引用本文

导出引用
胡剑超,练继建,马斌,董霄峰. 基于CEEMD和小波包阈值的组合降噪及泄流结构的模态识别方法[J]. 振动与冲击, 2017, 36(17): 1-9
Hu Jian-chao, Lian Ji-jian, Ma Bin, Dong Xiao-feng. An compound de-noising and modal identification method based on CEEMD and Wavelet Packet Threshold for flood discharge structure[J]. Journal of Vibration and Shock, 2017, 36(17): 1-9

参考文献

[1] 李成业,练继建,刘昉,等. EMD与小波阈值联合滤波方法的改进及其在泄流结构振动分析中的应用[J]. 振动与冲击,2013,32(9):63-70.
LI Cheng-ye, LIAN Ji-jian, LIU Fang, et al. An improved filtering method based on EMD and wavelet-threshold and its application in vibration analysis for a flood discharge structure [J]. Journal of vibration and shock, 2013, 32(9): 63-70,110.
[2] Yan Zhang, JiJian Lian, Fang Liu. An improved filtering method based on EEMD and wavelet-threshold for modal parameter identification of hydraulic structure[J]. Mechanical Systems and Signal Processing, 2016, 68: 316-329.
[3] 邵忍平,曹精明,李永龙. 基于EMD小波阈值去噪和时频分析的齿轮故障模式识别与诊断[J]. 振动与冲击,2012,31(8):96-101,106.
SHAO Ren-ping, CAO Jing-ming, LI Yong-long. Gear fault pattern identification and diagnosis using Time-Frequency Analysis and wavelet threshold de-noising based on EMD[J]. Journal of vibration and shock, 2012, 31(8): 96-101, 106.
[4] Wu Z H, Huang N E. Ensemble empirical mode decomposition: A noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[5] 郑近德,程军圣,杨宇. 改进的EEMD算法及其应用研究[J]. 振动与冲击,2013,32(21):21-26,46.
Zheng Jin-de, Cheng Jun-sheng, Yang Yu. Modified EEMD algorithm and its applications[J]. Journal of vibration and shock, 2013, 32(21): 21-26, 46.
[6] Ouadfeul S A, Aliouane L. Random seismic noise attenuation data using the discrete and continuous wavelet transforms[J]. Arabian Journal of Geosciences, 2014, 7(7): 2531-2537.
[7] Torres M E, Colominas M A, Schlotthauer G, et al.A complete ensemble mode decomposition with adaptive noise[C] // IEEE International Conference on Acoustics. Speech and signal Processing(ICASSP). USA, NJ: IEEE. 2011. 4144-4147.
[8] Hemmati F, Orfali W, Gadala MS. Roller bearing acoustic signature extraction by wavelet packet transform, applications in fault detection and size estimation[J]. Applied Acoustics, 2016, 104(1): 101-118.
[9] Lian J J,Li H K,Zhang J W. ERA modal identification method for hydraulic structures based on order determination and noise reduction of singular entropy[J]. Science in China series E-Technological Sciences, 2009, 52(2): 400-412.
[10] 李蕾红,陆秋海,任革学.特征系统实现法的识别特性研究及算法的推广[J]. 工程力学,2002,19(1):109-115.
LI Lei-hong, Lu Qiu-hai,Ren Ge-xue. A study of eigensystem realization algorithm and its generalization[J]. Engineering Mechanics, 2002, 19(1): 109-115.
[11] Juang J N, Cooper J E, Wright J R. An eigensystem realization algorithm using data correlation (ERA/DC) for modal parameter identification [J]. Control Theory and Advanced Technology, 1988, 4(1): 5-14.
[12] Chiang Dar-Yun, Lin Chang-Sheng. Identification of modal parameters from ambient vibration data using eigensystem realization algorithm with correlation technique[J]. Journal of Mechanical Science and Technology, 2010, 24(12): 2377-2382.
[13] 李淑君,练继建,欧阳秋平. 高坝泄流诱发坝区及场地振动的振源分析研究[J]. 水利水电技术,2014,45(9):47-51.
LI Shu-jun, LIAN Ji-jian, OUYANG Qiu-pin. Study on source of dam discharge-induced vibration in dam region and site[J]. Water Resources and Hydropower Engineering, 2014, 45(9): 47-51.
[14] 董霄峰,练继建,杨敏,等. 海上风机结构工作模态识别的组合降噪方法[J]. 天津大学学报(自然科学与工程技术版),2015,48(3):203-208.
DONG Xiao-feng, LIAN Ji-jian, Yang Min, et al. A compound de-noising method for operational modal identification of offshore wind turbine structure[J]. Journal of Tianjin University(Science and Technology),2015,48(3):203-208.

PDF(1540 KB)

Accesses

Citation

Detail

段落导航
相关文章

/