基于孔隙演化的砂土冲击绝热关系研究

高飞,2,邱艳宇1,2,王明洋1,2,张先锋1,程怡豪2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 134-140.

PDF(911 KB)
PDF(911 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 134-140.
论文

基于孔隙演化的砂土冲击绝热关系研究

  • 高飞 ,2,邱艳宇1,2,王明洋1,2,张先锋1,程怡豪2
作者信息 +

Study on the shock Hugoniot relationships of sand considering porosity evolution

  • GAO Fei1, 2, QIU Yan-yu1, 2, WANG Ming-yang1, 2, ZHANG Xian-feng1, CHENG Yi-hao2
Author information +
文章历史 +

摘要

基于砂土多孔、含水的特性,对动载荷作用下孔隙演化对砂土冲击绝热关系的影响进行了研究。基于砂土基体的不可压缩假设,采用单个球形气孔等效模型和广义Mises屈服准则推导了砂土考虑孔隙压实的演化方程;根据冲击Hugoniot突跃条件和Grüneisen型方程,获得了砂土考虑孔隙演化的状态方程;根据混合物冲击波关系和孔隙演化状态方程,获得了砂土基体材料冲击绝热关系、干砂土和湿砂土冲击绝热关系,并与已有实验结果进行了对比。结果表明:计算得到的绝热线与实验数据吻合较好,该孔隙演化状态方程能够较为准确的反映动载作用下砂土的动态响应过程。

Abstract

The effect of porosity evolution to sand shock Hugoniot relationships under dynamic loading was investigated based on the porous and hydrous characteristics of sand. Based on the incompressible hypothesis of sand matrix, a single spherical pore model and generalized Mises strength criterion, the porosity evolution equation of sand was derived; According to the Hugoniot jump condition and Grüneisen-type equation, the equation of state considering porosity dynamic compaction was given; The shock adiabatic curves for sand matrix, dry sand and moist sand were obtained by using the mixture relationships of the shock wave and porosity evolution equation of state. Results show that the calculated shock adiabatic curves for sand are agree well with the available experimental data in the literature, and the model can accurately reflect the dynamic response of sand under dynamic loading.

关键词

砂土;孔隙演化;Grü / neisen型状态方程;冲击绝热关系

Key words

sand / porosity evolution / Grüneisen-type equation of state / shock Hugoniot relationship

引用本文

导出引用
高飞,2,邱艳宇1,2,王明洋1,2,张先锋1,程怡豪2. 基于孔隙演化的砂土冲击绝热关系研究[J]. 振动与冲击, 2017, 36(17): 134-140
GAO Fei1, 2, QIU Yan-yu1, 2, WANG Ming-yang1, 2, ZHANG Xian-feng1, CHENG Yi-hao2. Study on the shock Hugoniot relationships of sand considering porosity evolution[J]. Journal of Vibration and Shock, 2017, 36(17): 134-140

参考文献

[1] Brown J L, Vogler T J, Grady D E, et al. Dynamic compaction of sand[C]// American Institute of Physics Conference Proceedings. American Institute of Physics, 2007, 1363-1366.
[2] 周健, 池永. 砂土力学性质的细观模拟[J]. 岩土力学, 2003, 24(6): 901-906.
ZHOU Jian, CHI Yong. Mesomechanical simulation of  sand mechanical properties[J]. Rock and Soil Mechanics,  2003, 24(6): 901-906.
[3] 蔡正银, 李相菘. 砂土的剪胀理论及其本构模型的发展[J]. 岩土工程学报, 2007, 29(8): 1122-1128.
CAI Zheng-yin, LI Xiang-song. Development of  dilatancy theory and constitutive model of sand[J].  Chinese Journal of Geotechnical Engineering, 2007,  29(8): 1122-1128.
[4] 常在, 杨军, 程晓辉. 砂土强度和剪胀性的颗粒力学分析[J]. 工程力学, 2010, 27(4): 95-104.
CHANG Zai, YANG Jun, CHENG Xiao-hui.  Granular  mechanical analysis of the strength and dilatancy of  sands[J]. Engineering mechanics, 2010, 27(4): 95-104.
[5] 李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则[J]. 岩石力学与工程学报, 2010, 29(9): 1885-1892.
LI Xue-feng, HUANG Mao-song, QIAN Jian-gu. Failure  criterion of anisotropic sand with method of   macro-meso incorporation[J]. Chinese Journal of Rock  Mechanics and Engineering, 2010, 29(9): 1885-1892.
[6] 张建民. 砂土动力学若干基本理论探究[J]. 岩土工程学报, 2012, 34(1): 1-50.
ZHANG Jian-min. New advances in basic theories of  sand dynamics[J]. Chinese Journal of Geotechnical  Engineering, 2012, 34(1): 1-50.
[7] Martin B E, Chen Weinong, Song Bo, et al. Moisture effects on the high strain-rate behavior of sand[J]. Mechanics of Materials, 2009, 41: 786-798.
[8] Proud W G, Chapman D J, Williamson D M, et al. The dynamic compaction of sand and related porous systems[C]// American Institute of Physics Conference Proceedings. American Institute of Physics, 2007, 1403-1408.
[9] Borg J P, Cogar J R, Lloyd A, et al. Computational simulations of the dynamic compaction of porous media[J]. International Journal of Impact Engineering, 2006, 33: 109-118.
[10] Carroll M M, Holt A C. Static and dynamic porecollapse relations for ductile porous materials[J]. Journal of Applied Physics, 1972, 43(4): 1626-1636.
[11] Carroll M M, Holt A C. Suggested modification of the Pα model for porous materials[J]. Journal of Applied Physics, 1972, 43(2): 759-761.
[12] Herrmann W. Constitutive equation for the dynamic compaction of ductile porous materials[J]. Journal of Applied Physics, 1969, 40(6): 2490-2499.
[13] Jutzi M, Benz W, Michel P. Numerical simulations of impacts involving porous bodies: I. Implementing sub-resolution porosity in a 3D SPH Hydrocode[J]. ICARUS, 2008, 198: 242-255.
[14] Borg J P, Morrissey M P, Perich C A, et al. In situ velocity and stress characterization of a projectile penetrating a sand target: experimental measurements and continuum simulations[J]. International Journal of Impact Engineering, 2013, 51: 23-35.
[15] 经福谦. 实验物态方程导引[M]. 北京: 科学出版社, 1986.
[16] 戚承志, 钱七虎. 岩体动力变形与破坏的基本问题[M]. 北京: 科学出版社, 2009.
[17] Belov N N, Kopanitsa D G, Kumpyak O G, et al. Calculation of reinforced-concrete structures for explosive and impact loads[M]. (in Russian), STT, Northampton, Tomsk, 2004.
[18] Белов Н Н, Югов Н Т, Афанасьева С А, et al. Исследование процессов деформирования и разрушения хрупких материалов[J]. Механика композиционных материалов и конструкций, 2001, 7(2): 131-142.

PDF(911 KB)

620

Accesses

0

Citation

Detail

段落导航
相关文章

/