本文研究门式框架结构在瞬态波动作用下的动力响应求解和自振特性分析问题。文中首先建立了局部坐标系下节点位移协调条件和力平衡条件,借助回传射线矩阵法,得到了方波脉冲激振力作用下的门式框架结构的动力学响应函数。在此基础上,通过离散Fourier逆变换和卷积变换,得到单位脉冲作用下框架结构的瞬态波动响应,并进一步探讨了门式框架结构的自振频率和模态特征。
Abstract
This note investigates the dynamic response analyzing issue for portal frames under shocking load with the help of reverberation-ray matrix method (RRMM). By converting the local coordinate and establishing the force equilibrium conditions, a reverberation-ray matrix is obtained with the given initial shocking load. Afterwards, the desired transient response is feasibly obtained according to the methods of inverse fast Fourier transform (IFFT) and convolution theorem. By the proposed method, the natural frequencies are conveniently acquired and the modal characteristics of portal frame are furthermore discussed.
关键词
回传射线矩阵法 /
门式框架 /
波动响应 /
自振频率 /
模态
{{custom_keyword}} /
Key words
/
reverberation-ray matrix method, portal frame, transient response, natural vibration frequency, mode characteristic.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Howard S M, Pao Y X. Analysis and experiments on stress waves in planar trusses[J]. Journal of Engineering Mechanics (ASCE), 1998, 124: 884-891.
[2] Pao Y X, Keh D C, Howard S M. Dynamic response and wave propagation in plane trusses and frames. Journal of AIAA,1999,37(5): 594-603.
[3] Pao Y H, Sun G J. Dynamic bending strains in planar trusses with pinned or rigid joints[J]. Journal of engineering mechanics. 2003,129: 324-332.
[4] Chen J F,Pao YH.Effects of causality and joint conditions on method of reverberation-ray matrix[J].AIAA Journal, 2003,41(6): 1138-1142.
[5] Pao Y H, Su X Y, Tian J Y.Reverberation matrix method for propagation of sound in a multilayered liquid[J]. Journal of Sound and Vibration, 2000,230(4):743-760.
[6] 徐剑锋, 杜晓伟, 涂振国, 孙国均. 钢屋架瞬态动力响应的弹性波分析[J]. 上海交通大学学报, 2002,36(3): 432-435.
Xu J F, Du X W, Tu Z G, Sun G J. Elastic wave analysis of transient response for a steel roof truss[J]. Journal of Shanghai Jiaotong University, 2002, 36(3): 432-435.
[7] 田家勇, 苏先樾. 刚架结构中瞬态波的传播[J]. 爆炸与冲击, 2001,21(2): 98-104.
Tian J Y, Su X Y. The transient waves in frame structures[J]. Explosion and Shock Waves, 2001,21(2): 98-104.
[8] 田家勇, 苏先樾. 刚架结构的节点质量阻尼减振分析[J]. 固体力学学报, 2002,23(1): 41-52.
Tian J Y, Su X Y. The vibration suppression of joint mass-damping in frame structures[J]. Acta Mechanica Solida Sinica, 2002,23(1): 41-52.
[9] 陈云敏,王宏志. 回传射线矩阵法分析桩的横向动力响应[J]. 岩土工程学报, 2002,24(3):271-275.
Chen Y M, Wang H Z. Analysis on lateral dynamic response of a pile with the method of reverberation ray matrix[J]. Chinese Journal of Geotechnical Engineering, 2002,24(3):271-275.
[10] 余云燕. 在埋置框架中应力波传播的影响因素分析[J]. 计算力学学报, 2007,24(5): 659-663.
Yu Y Y. Stress wave propagation and study on influencing factor in frame structure embedded partially in soil[J]. Chinese Journal of Computational Mechanics, 2007,24(5): 659-663.
[11] 余云燕. 有缺陷埋置框架的波动响应及影响因素研究[J]. 振动工程学报, 2007,20(2): 194-199.
Yu Y Y. Studies on wave responses of a defective frame structure embedded partial ly in soil and influence factors[J]. Journal of Vibration Engineering, 2007,20(2): 194-199.
[12] Pao Y H, Chen W Q. Elastodynamic theory of framed structures and reverberation-ray matrix analysis[J]. Acta Mechanica, 2009,204(1):61-79.
[13] 郭永强. 回传射线矩阵法的理论及其应用[D]. 浙江大学, 2008.
Guo Y Q. The method of reverberation-ray matrix and its applications[D]. Zhejiang University, 2008.
[14] 郭永强,陈伟球,肖春文. 复杂空间框架结构的自振特性分析[J]. 振动工程学报, 2008,21(3): 261-267.
Guo Y Q, Che W Q, Xiao C W. Dynamic property analysis of complex space structures[J]. Journal of Vibration Engineering, 2008,21(3): 261-267.
[15] Miao F X,Sun G J, Pao Y H. Vibration mode analysis of frames by the method of reverberation ray matrix[J]. Journal of Vibration and Acoustics. 2009,131:1-5
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}