轴承摩擦力作用下弹性支承轴系自激振动特性研究

覃文源1,2,覃会1,2,郑洪波1,2,张振果1,2,张志谊1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 187-194.

PDF(2478 KB)
PDF(2478 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 187-194.
论文

轴承摩擦力作用下弹性支承轴系自激振动特性研究

  • 覃文源1,2,覃会1,2,郑洪波1,2,张振果1,2,张志谊1,2
作者信息 +

Research on Self-Excited Vibration of Flexibly Supported Shafting System Induced by Bearing Friction

  • Qin Wenyuan1,2  Qin Hui1,2  Zheng Hongbo1,2  Zhang Zhenguo1,2  Zhang Zhiyi1,2
Author information +
文章历史 +

摘要

以重力式水洞中的弹性支承轴系为研究对象,研究其在水润滑橡胶轴承摩擦力作用下的自激振动特性及其机理。实验结果表明,系统于某一确定转速产生自激振动,并随转速下降维持不变直到一个较低转速由于驱动力不足而消失,各个转速下的自激振动均表现为转速调制下的单阶模态失稳。为了研究自激振动机理,建立了弹性支承轴系动力学模型。在建模时,首先将轴系分为弹性支承和转轴两个子结构,分别获取固有振动频率和模态振型,然后建立在轴承界面摩擦力作用下的支承-转轴耦合动力学模型,并采用模态叠加法对模型进行降阶处理。采用四阶Runge-Kutta方法求解动力学方程,分析主要物理参数对系统的影响。分析结果表明,失稳模态为支承的小阻尼扭转振动模态,支承振动与轴承摩擦耦合作用是系统失稳的主要原因。

Abstract

The vibration characteristics of a flexibly supported shafting system, placed in a gravity water tunnel and excited by the friction from water-lubricated rubber bearing, were investigated to increase understanding of self-excited instability mechanism. Experimental results indicated that the self-excited vibration emerged at a specific speed and grew stronger as the shaft speed decreased, but it disappeared at a low speed due to inadequate drive capacity from motor. To analyze self-excited instability mechanism, the dynamic model of the system was built. In the modeling of the dynamics, the substructure synthesis method was employed and two substructures, the flexible support and the shaft, were analyzed respectively to derive the associated natural frequencies and modes according to compatible conditions and boundary conditions. Next, an synthesized model of the shafting system coupled through the friction of water-lubricated rubber bearing was built and reduced by mode truncation. The fourth order Runge-Kutta method was used to solve the pre-built dynamic equations and the influences of several physical parameters on vibration instability were investigated. The experimental results and numerical results can reach a good agreement. The results show that the instability mode is associated with a certain rotational mode of support as a result of light damping. The interaction effect of support vibration and bearing friction is decisive for instability.
 

关键词

弹性支承 / 摩擦激励 / 耦合振动 / 自激振动

Key words

 flexible support / friction excitation / coupled vibration / self-excited vibration

引用本文

导出引用
覃文源1,2,覃会1,2,郑洪波1,2,张振果1,2,张志谊1,2. 轴承摩擦力作用下弹性支承轴系自激振动特性研究[J]. 振动与冲击, 2017, 36(17): 187-194
Qin Wenyuan1,2 Qin Hui1,2 Zheng Hongbo1,2 Zhang Zhenguo1,2 Zhang Zhiyi1,2. Research on Self-Excited Vibration of Flexibly Supported Shafting System Induced by Bearing Friction[J]. Journal of Vibration and Shock, 2017, 36(17): 187-194

参考文献

[1] ORNDORFF JR R L. Water-lubricated rubber bearings, history and new developments [J]. Naval Engineers Journal, 1985, 97(7):39-52.
[2] 陈之炎. 船舶推进轴系振动[M]. 上海:上海交通大学出版社, 1987.
CHEN Z.Y. Vibration of propulsion shaft system in ships [M]. Shanghai: Shanghai Jiao Tong University Press, 1987.
[3] CARLTON J. Marine propellers and propulsion [M]. Butterworth-Heinemann, 2012.
[4] HIRANI H, VERMA M. Tribological study of elastomeric bearings for marine propeller shaft system [J]. Tribology International, 2009, 42(2):378-390.
[5] 杨令康. 船舶尾轴尾轴承间的润滑与碰摩特性研究[D]. 武汉:武汉理工大学, 2010.
Yang L.K. Study on lubrication and rub impact characteristics of stern shaft-bearing in ships [D]. Wuhan: Wuhan University of Technology, 2010.
[6] 张略. 水润滑复合橡胶尾轴承振鸣音机理分析及试验研究[D]. 武汉:武汉理工大学, 2013.
Zhang L. Mechanism analysis and experimental research on vibration noise phenomenon of water-lubricated composite rubber bearing [D]. Wuhan: Wuhan University of Technology, 2013.
[7] 张振果,张志谊,王剑,等. 螺旋桨推进轴系摩擦自激扭转振动研究[J]. 振动与冲击, 2013,32(19):153-158.
ZHANG Z.G., ZHANG Z.Y., WANG J, et al. Friction induced self-excited vibration in a propeller shaft system [J]. Journal of Vibration and Shock, 2013, 32(19):153-158.
[8] ZHANG Z, CHEN F, ZHANG Z, et al. Analysis of friction-induced vibration in a propeller-shaft system with consideration of bearing-shaft friction [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(8):1311-1328.
[9] 王磊,俞强,刘义军. 水润滑橡胶轴承摩擦噪声特性分析及试验研究[J]. 武汉理工大学学报(交通科学与工程版), 2015(2).
WANG L, YU Q, LIU Y.J. Characteristic analysis and experimental study on friction-induced noise in warer-lubricated rubber bearings [J]. Journal of Wuhan University of Technology (Transportation Science &Engineering), 2015(2).
[10] KRAUTER AI. Generation of squeal/chatter in water-lubricated elastomeric bearings [J]. ASME J Lubric Technol, 1981, 103:406-412.
[11] SIMPSON T A, IBRAHIM R A. Nonlinear friction-induced vibration in water-lubricated bearings [J]. Journal of Vibration and Control, 1996, 2(1):87-113.
[12] ERIKSSON M, JACOBSON S. Friction behavior and squeal generation of disc brakes at low speeds [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2001, 215(12):1245-1256.
[13] 李方,帅长庚,何琳,等. 橡胶轴承耦合转子系统动力学研究[J]. 噪声与振动控制, 2011,31(3):37-41.
LI F. SHUAI C.G., HE L. Dynamic analysis of rotor system coupled by rubber bearings [J]. Noise and Vibration Control, 2011,31(3):37-41.
[14] 张振果,张志谊,陈锋,等. 摩擦激励下螺旋桨推进轴系弯扭耦合振动研究[J]. 机械工程学报, 2013,49(6):74-80.
ZHANG Z.G., ZHANG Z.Y., CHEN F., et al. Research on the coupling between torsional and lateral vibrations in propeller-shaft system with friction [J]. Journal of Mechanical Engineering, 2013,49(6):74-80.
[15] ZHANG Z, ZHANG Z, Huang X, et al. Stability and transient dynamics of a propeller-shaft system as induced by nonlinear friction acting on bearing-shaft contact interface [J]. Journal of Sound and Vibration, 2014, 333(12):2608-2630.
[16] 邹丞,王家序,余江波,等. 橡胶层厚度和硬度对水润滑整体式轴承摩擦因数的影响[J]. 润滑与密封, 2006(2):40-41.
ZOU C., WANG J.X., YU J.B., et al. Effect of thickness and hardness of rubber unerlayer on frictional coefficient of water-lubricated integer bearings [J]. Lubrication Engineering, 2006(2):40-41.
[17] 姚世卫,胡宗成,马斌,等. 橡胶轴承研究进展及在舰艇上的应用分析[J]. 舰船科学技术, 2008,27 (z1):27-30.
YAO S.W. HU Z.C., MA B., et al. The new development of rubber bearing and its application in warships [J]. Journal of Ship Science and Technology, 2008, 27(z1):27-30.
[18] 王浩. 新型水润滑橡胶尾轴承试验研究[D]. 武汉:武汉理工大学, 2012.
WANG H. Experimental research on the new type of water-lubricated stern tube rubber bearings [D]. Wuhan: Wuhan University of Technology, 2012.
[19] 段海涛,吴伊敏,王学美,等. 新型水润滑轴承材料的摩擦学性能研究[J]. 武汉理工大学学报, 2012, 34(2006):17-21.
DUAN H.T., WU Y.M., WANG X.M., et al. Study on the tribological properties of new water-lubricated bearing materials [J]. Journal of Wuhan University of Technology, 2012, 34(2006):17-21.
[20] Mihajlović N, Van de Wouw N, Rosielle P, et al. Interaction between torsional and lateral vibrations in flexible rotor systems with discontinuous friction [J]. Nonlinear Dynaimics, 2007, 50 (3):679-699.
[21] Rao S.S., Yap F.F. Mechanical vibrations [M]. New York: Addison-Wesley, 1995.
[22] Kalin M., Velkavrh I., Vizintin J. The Stribeck curve and lubrication design for non-fully wetted surfaces [C]. The 17th international conference in wear of materials, April 19-22, 2009, Las Vegas, Nevada.
[23] Berger E J. Friction modeling for dynamic system simulation[J]. Applied Mechanics Reviews, 2002, 55(6): 535-577.
[24] 傅志方,华宏星. 模态分析理论与应用[M]. 上海交通大学出版社, 2000.
Fu Z.F., Hua H.X. Modal analysis theory and application [M]. Shanghai: Shanghai Jiao Tong University Press, 2000.

PDF(2478 KB)

336

Accesses

0

Citation

Detail

段落导航
相关文章

/