半球壳冲击土壤的SPH-FEM耦合分析方法

罗杰1,肖建春1,马克俭1,毛家意2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 195-199.

PDF(1616 KB)
PDF(1616 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 195-199.
论文

半球壳冲击土壤的SPH-FEM耦合分析方法

  • 罗杰1,肖建春1,马克俭1,毛家意2
作者信息 +

Coupled SPH-FEM Method for Analyzing Hemispherical Shell Impact on Soil

  • LUO Jie1  XIAO Jian-chun1  MA Ke-jian1  MAO Jia-yi2
Author information +
文章历史 +

摘要

SPH 方法作为一种具有无网格、拉格朗日性质的动力学求解算法,已经广泛应用于冲击动力学的研究。采用SPH-FEM耦合分析和8组试验进行半球壳冲击土壤的对比分析,比较加速度时程曲线和局部变形图,验证SPH-FEM方法在处理此类问题中的适用性。利用SPH-FEM方法得到的能量和冲击力时程曲线,归纳出土壤的能量耗散机理。分析表明,数值模拟结果和试验结果吻合较好,SPH-FEM方法能胜任模拟半球壳冲击土壤的整个过程。土壤是一种很好的能量缓冲体。

Abstract

SPH method, a Lagrangian, meshless hydrodynamics method, had been widely applied in the impact dynamics research. In order to validate the applicability of the SPH-FEM method in the problem of impact on soil, the SPH-FEM coupling analysis and eight tests were adopted. The acceleration-time history curve and local deformation from SPH-FEM models and tests were compared. The energy dissipation mechanism of the soil was summarized by the energy and impact force-time history curves were obtained by the SPH-FEM method. The study showed the SPH-FEM method can greatly simulate the whole process of the hemispherical shell impact soil in which the numerical simulation results are in good agreement with the experimental results. The soil is a good cushion material.

关键词

SPH-FEM / 冲击 / 土壤 / 半球壳 / 加速度

Key words

  / SPH-FEM, impact, soil, hemisphere shell, acceleration

引用本文

导出引用
罗杰1,肖建春1,马克俭1,毛家意2. 半球壳冲击土壤的SPH-FEM耦合分析方法[J]. 振动与冲击, 2017, 36(17): 195-199
LUO Jie1 XIAO Jian-chun1 MA Ke-jian1 MAO Jia-yi2. Coupled SPH-FEM Method for Analyzing Hemispherical Shell Impact on Soil[J]. Journal of Vibration and Shock, 2017, 36(17): 195-199

参考文献

[1] 庞勇,刘才山. 低速刚性体冲击密实散体介质的动力学实验与理论研究[C]// 中国力学大会暨钱学森诞辰100周年纪念大会. 哈尔滨市, 2011.
[2] Goldman D. I., Umbanhowar P. Scaling and dynamics of sphere and disk impact into granular media[J]. Physical Review E, 2008,77(1): 255-282.
[3] Katsuragi H., Durian D. J. Unified force law for granular impact cratering. Nature Physics, 2007, 3(6): 420-423.
[4] 黄雨,郝亮,谢攀,等. 土体流动大变形的SPH 数值模拟[J]. 岩土工程学报, 2009, 31(10): 1520-1524.
HUANG Yu, HAO Liang, XIE Pan, et al. Numerical simulation of large deformation of soil flow based on SPH method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1520-1524.
[5] SASAKI T, OHNISHI Y, YOHINAKA R. Discontinues deformation analysis and its application to rock mechanics problems[J]. Journal of Geotechnical Engineering, JSCE, 1994,Ⅲ-27: 11–20.
[6] BAXTER G W, BEHRINGER R P. Cellular automata models of granular flow[J]. Physical Review A, 1990, 42(2): 1017-1020.
[7] Lucy L B. A numerical approach to testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013-1024. 
[8] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181: 375-389.
[9] Monaghan J J, Lattanzio J C. A refined particle method for astrophysical problem[J]. Astronomy and Astrophysics, 1985, 149(1): 135-143.
[10] Michel Y, Chevalier J M, Durin C, et al. Hypervelocity impacts on thin brittle targets: experimental data and SPH simulations[J]. International Journal of Impact Engineering, 2006, 33(1/12): 441-451.
[11] Cleary P W, Sinnott M, Morrison R. Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media[J]. Minerals Engineering, 2006, 19(15): 1517-1527.
[12] Fang J N, Owens R G, Tacher L, et al. A numerical study of the SPH method for simulating transient viscoelastic free surface flows[J].  Journal of Non-Newtonian Fluid Mechanics, 2006, 139(1/2): 68-84.
[13] 许庆新,沈荣瀛,周海亭. SPH方法在剪切式碰撞能量吸收器中的应用[J]. 振动与冲击, 2007, 26(9): 108-111.
XU Qing-xin, SHEN Rong-ying, ZHOU Hai-ting. Applying SPH method to shearing energy absorbers[J]. Journal of Vibration and Shock, 2007, 26(9): 108-111.
 [14] 沈燕鸣,何琨,陈坚强,等. SPH同一算法对自由流体冲击弹性结构体问题模拟[J]. 振动与冲击, 2015, 34(16): 60-65.
SHEN Yan-ming, HE Kun, CHEN Jian-qiang, et al. Numerical simulation of free surface flow impacting elastic structure with SPH uniform method [J]. Journal of Vibration and Shock, 2015, 34(16): 60-65.
[15] 杨刚,傅奕轲,郑建民,等. 基于SPH 方法对不同药型罩线性聚能射流形成及后效侵彻过程的模拟[J]. 振动与冲击, 2016, 35(4): 56-61.
YANG Gang, FU Yi-ke, ZHENG Jian-min, et al. Simulation of formation and subsequent penetration process of linear shaped charge jets with different liners based on SPH method [J]. Journal of Vibration and Shock, 2016, 35(4): 56-61.
[16] Bui H. Ha, Fukagawa R., Sako K., et al. Lagrangian mesh-free particle method (SPH) for large deformation and post-failure of geomaterial using elastic-plastic soil constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32: 1537-1570.
[17] 黄雨,郝亮,野々山泶人. SPH 方法在岩土工程中的研究应用进展[J]. 岩土工程学报, 2008, 30(2): 256-262.
HUANG Yu, HAO Liang, NONOYAMA Hideto. The state of the art of SPH method applied in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 256-262.
[18] LIU G R, LIU M B. Smoothed particle hydrodynamics-a meshfree particle method[M]. New Jersey: World Scientific Publishing Company, 2003.
[19] 张志春,强洪夫,高巍然. 一种新型SPH-FEM 耦合算法及其在冲击动力学问题中的应用[J]. 爆炸与冲击, 2011, 31(3): 243-249.
ZHANG Zhi-chun, QIANG Hong-fu, GAO Wei-ran. A new coupled SPH-FEM algorithm and its application to impact dynamics[J]. Explosion and Shock Waves, 2011, 31(3): 243-249.
[20] 马炜. 散体介质冲击荷载作用下力学行为理论分析与算法实现[D]. 北京大学, 2008.
[21] 汪中卫,王海飙,戚科骏,等. 土体小应变试验研究综述与评价[J]. 岩土力学, 2007, 28(7): 1518-1523.
WANG Zhong-wei, WANG Hai-biao, QI Ke-jun, et al. Summary and evaluation of experimental investigation on small strain of soil[J]. Rock and Soil Mechanics, 2007, 28(7): 1518-1523.
[22] Lewis B A. Manual for LS-DYNA soil material model 147 [R]. USA: Federal Highway Administration Research and Development Turner Fairbank Highway Research Center, 2004.

PDF(1616 KB)

563

Accesses

0

Citation

Detail

段落导航
相关文章

/