附设粘滞阻尼器的仿古建筑混凝土枋-柱节点动力性能试验研究

薛建阳,董金爽,隋,戚亮杰,许丹

振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 211-219.

PDF(1751 KB)
PDF(1751 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 211-219.
论文

附设粘滞阻尼器的仿古建筑混凝土枋-柱节点动力性能试验研究

  • 薛建阳,董金爽,隋,戚亮杰,许丹
作者信息 +

Experimental research on dynamic performance of concrete lintel-column joint with viscous damper in archaized buildings

  • XUE Jianyang, DONG JinShuang, SUI Yan, QI Liangjie, XU Dan
Author information +
文章历史 +

摘要

为研究附设粘滞阻尼器的仿古建筑混凝土枋-柱节点在地震作用下的抗震性能,设计制作了3个仿古建筑混凝土枋-柱节点,包括2个附设粘滞阻尼器的有控结构试件,1个未附设粘滞阻尼器的无控结构对比试件,对其进行动力试验。观察试件的受力过程及破坏特征,分析其受力机理及破坏模式,并研究了其荷载-位移滞回曲线、骨架曲线、承载能力、刚度退化等力学特性。试验结果表明:附设粘滞阻尼器的仿古建筑混凝土枋-柱节点的抵御外荷载的能力明显高于未附设粘滞阻尼器的无控结构,屈服荷载提高幅度平均值约为27.4%,极限荷载提高幅度平均值约为22.4%;附设阻尼器的有控结构位移延性及耗能能力均优于无控结构,且有控结构的骨架曲线在达到极限荷载之后的下降段更为平缓;极限荷载时,有控结构的等效粘滞阻尼系数提高幅度约为27.3%~30.8%,说明附设粘滞阻尼器的仿古建筑混凝土枋-柱节点具有更为优越的抗震性能。

Abstract

In order to analyze the vibration control effect of viscous damper in the concrete archaized buildings with lintel-column joint under seismic action, 3 specimens were tested under dynamic experimental, including two specimens with viscous damper which called controlled structure and a specimen without viscous damper which called non-controlled structure. The failure process and patterns were obtained. The failure characteristics, skeleton curves, mechanical behavior such as the load-displacement hysteretic loops, bearing capacity and stiffness of the joints were analyzed. The results indicate that the load-bearing capacity of controlled structure is significantly higher than non-controlled structure; the mean amount of increasing in yield load and ultimate load is 27.4% and 22.4% respectively. Meanwhile, the performance of displacement ductility and the ability of energy dissipation are superior non-controlled structure. Compared with non-controlled structure, equivalent viscous damping coefficient is improved by 27.3%~30.8%. All these results reflect that the seismic performance of controlled structure significantly is superior to non-controlled structure.
 

关键词

仿古建筑 / 混凝土 / 动力试验 / 抗震性能 / 粘滞阻尼器

Key words

archaized building / concrete / dynamic test / seismic behavior / viscous damper

引用本文

导出引用
薛建阳,董金爽,隋,戚亮杰,许丹. 附设粘滞阻尼器的仿古建筑混凝土枋-柱节点动力性能试验研究[J]. 振动与冲击, 2017, 36(17): 211-219
XUE Jianyang, DONG JinShuang, SUI Yan, QI Liangjie, XU Dan. Experimental research on dynamic performance of concrete lintel-column joint with viscous damper in archaized buildings[J]. Journal of Vibration and Shock, 2017, 36(17): 211-219

参考文献

[1]. 薛建阳,吴占景,隋龑,等. 传统风格建筑钢结构双梁-柱中节点抗震性能试验研究及有限元分析[J].工程力学,2016,33(05):97-105.(XUE Jian-yang,WU Zhan-jing, SUI Yan,et al. Experimental study and numerical analysis on seismic performance of steel double beams-column interior-joints in traditional style building[J]. Engineering Mechanics,2016, 33(05):97-105. (in Chinese))
[2]. 高延安,杨庆山,王娟,等. 环境激励下古建筑飞云楼动力性能分析[J]. 振动与冲击,2015,34(22):144- 148+182. (GAO Yan-an,YANG Qing-shan,WANG Juan, et al. Dynamic performance of the ancient architecture of Feiyun pavilion under the condition of environmental excitation[J].Journal of Vibration and Shock,2015,34(22):144-148. (in Chinese)).
[3] 李朋.传统风格建筑钢筋混凝土梁-柱节点抗震性能研究[D].西安:西安建筑科技大学,2014.(LI Peng. Experimental study on seismic behavior of RC column-beam joint built in traditional style[D].Xi’an, Xi’an University of Architecture and Technology, 2014. (in Chinese)).
[4] Markris N, Constantinou M C. Viscous dampers: testing, modeling, application in vibration and seismic isolation[A]// National Center for Earthquake Engineering Research. Technical Report NCEER-90-028n[R].Buffalo, New York:1990.
[5] 欧进萍, 吴斌, 龙旭, 等. 北京饭店消能减震抗震加固分析与设计:时程分析法[J].地震工程与工程振动,2001,21(4):82-87. (OU Jin-ping, WU Bin, LONG Xu, et al. Analysis and design of seismic retrofit of Beijing Hotel with energy dissipation: Time history method[J].Earthquake Engineering and EngineeringVibration,2001,21(4):82-87.(inChinese)
[6] 梁思成.清.工程做法则例图解[M].北京:清华大学出版社,2006. (LIANG Si-cheng. Imperial Specifications for State Buildings[M]. Beijing: Tsinghua University Press, 2006.(in Chinese))
[7] Housner G W, Bergman L A, Caughey T K, et al. Structural control: past, present, and future[J]. Journal of engineering mechanics, 1997, 123(9): 897-971.
[8]  GB50011-2010 建筑抗震设计规范[S].北京:中国建筑工业出版社, 2010. (GB50010-2010 Code for design of concrete structures[S]. Beijing: China Architecture & Building Press, 2010. (in Chinese) )
[9]  GB/T 17742-2008 中国地震烈度表[S].北京:中国建筑工业出版社,2008. (GB/T 17742-2008 The Chinese seismic intensity scale[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)).
[10] Highway Innovative Technology Evaluation Center. Guidelines for the testing of seismic isolation and energy dissipation devices[R].Technical Evaluation Report No: 40404.
[11] JGT209-2012. 建筑消能阻尼器[S].北京:中国标准出版社.2012. (JGT209-2012.Dampers for vibration energy dissipation of buildings[S]. Beijing: China Standards Press.2012.(in Chinese)).
[12] Elnashai A S, Broderick B M, Dowling P J. Earthquake-resistant composite steel/concrete structures[J]. Structural Engineer, 1995, 73: 121-121.
 
[13] 韩林海.钢管混凝土结构: 结构与实践[M]. 北京:科学出版社,2007. (HAN Lin-hai. CFST Structure: Theory and Practice[M]. Beijing: Science Press,2007.(in Chinese)).
[14] Gosain N K, Jirsa J O, Brown R H. Shear requirements for load reversals on RC members[J]. Journal of the Structural Division, 1977, 103(7): 1461-1476.
[15] Wang C, Foliente G C, Sivaselvan M V, et al. Hysteretic models for deteriorating inelastic structures[J]. Journal of Engineering Mechanics, 2001, 127(11): 1200-1202.
[16] Song J K, Pincheira J A. Spectral displacement demands of stiffness and strength degrading systems[J]. Earthquake Spectra, 2000, 16(4): 817-851.

PDF(1751 KB)

Accesses

Citation

Detail

段落导航
相关文章

/