基于时频脊线旋转匹配的多普勒矫正方法研究

刘星辰1,胡智勇1,何清波1,朱军1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 29-34.

PDF(1446 KB)
PDF(1446 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 29-34.
论文

基于时频脊线旋转匹配的多普勒矫正方法研究

  • 刘星辰1,胡智勇1,何清波1,朱军1
作者信息 +

Doppler correction based on rotation matching of time-frequency ridge

  • LIU Xing-chen 1 HU Zhi-yong1HE Qing-bo 1ZHU Jun1
Author information +
文章历史 +

摘要

多普勒效应使信号产生畸变,增加了道旁高速列车声学故障诊断的难度。时域重采样是一种有效的多普勒畸变矫正方法,该方法需要对时间中心有一个准确估计。在深入分析多普勒畸变信号瞬时频率变化特征的基础上,提出一种新的多普勒畸变校正方法。首先用时频融合技术提高时频图的分辨率,然后对时频脊线旋转匹配以获得时间中心,从而求得重采样序列用以校正多普勒畸变。仿真信号和实验信号分析结果表明,该方法能有效实现多普勒矫正,在道旁声学故障诊断中有一定的可行性。

Abstract

Doppler effect causes acousticsignal distortion, increasing the difficulty of wayside acoustic fault diagnosis of high-speed trainbearings. Time-domain resampling is an effective Doppler correction method which requires an accurate estimation of the time center. Based on the feature of instantaneous frequency of the Doppler signal, this paper proposed a new Doppler correction method. Firstly, the time-frequency fusion technique was applied to improve the resolution of time-frequency representation. Then the time-frequency ridgewas rotated and matched with the original one to achieve the time center. Finally, the resampling sequence was calculated and utilized to correct the Doppler distortion. Simulations and experiments demonstrated that this proposed method can effectively correct the Doppler distortion and has a good prospect in application to the wayside acoustic fault diagnosis.

关键词

故障诊断 / 多普勒畸变 / 声学信号 / 时频图旋转匹配

Key words

 fault diagnosis / Dopplerdistortion / acoustic signal / rotation matching of time-frequency ridge

引用本文

导出引用
刘星辰1,胡智勇1,何清波1,朱军1. 基于时频脊线旋转匹配的多普勒矫正方法研究[J]. 振动与冲击, 2017, 36(17): 29-34
LIU Xing-chen 1 HU Zhi-yong1HE Qing-bo 1ZHU Jun1. Doppler correction based on rotation matching of time-frequency ridge[J]. Journal of Vibration and Shock, 2017, 36(17): 29-34

参考文献

[1] Tandon N,Choudhury A. A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings[J]. Tribology International, 1999, 32 (8): 469-480.
[2] He Q, Wang J, Hu F, et al. Wayside acoustic diagnosis of defective train bearings based on signal resampling and information enhancement[J]. Journal of Sound and Vibration, 2013, 332 (21): 5635-5649.
[3]朱军, 闵祥敏, 孔凡让, 等. 基于分量筛选奇异值分解的滚动轴承故障诊断方法研究[J]. 振动与冲击, 2015, 34 (20): 61-65.
ZHU Jun, MIN Xiang-min, KONG Fan-rang, et al. Rolling bearing fault diagnosis based on component screening singular value decomposition[J]. Journal of Vibration and Shock, 2015, 34(20): 61-65.
[4] Hu Z, Wang C, Zhu J, et al. Bearing fault diagnosis based on an improved morphological filter[J]. Measurement, 2016, 80: 163-178.
[5] Irani F D,吴朝院. 先进道旁车辆状态监视系统的开发和应用[J].国外铁道车辆, 2002, 39 (2): 39-45.
Irani F D, WU Chao-yuan. Development and deployment of advanced wayside condition monitoring systems[J]. Foreign Rolling Stock, 2002, 39(2): 39-45.
[6] Wang C, Kong F, He Q, et al. Doppler Effect removal based on instantaneous frequency estimation and time domain re-sampling for wayside acoustic defective bearing detector system[J]. Measurement, 2014, 50: 346-355.
[7] Barke D,Chiu K W. Structural health monitoring in the railway industry: A review[J]. Structural Health Monitoring, 2005, 4 (1): 81-94.
[8] Dybala J,Radkowski S. Reduction of Doppler effect for the needs of wayside condition monitoring system of railway vehicles[J]. Mechanical Systems and Signal Processing, 2013, 38 (1): 125-136.
[9] Zhang A, Hu F, He Q, et al. Doppler Shift Removal Based on Instantaneous Frequency Estimation for Wayside Fault Diagnosis of Train Bearings[J]. Journal of Vibration and Acoustics, 2014, 136 (2): 021019.
[10] Zhang H, Zhang S, He Q, et al. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system[J]. Journal of Sound and Vibration, 2016, 361: 307-329.
[11]刘方, 沈长青, 何清波, 等. 基于时域多普勒校正和EEMD的列车轴承道旁声音监测故障诊断方法研究[J]. 振动与冲击, 2013, 32 (24): 104-109.
LIU Fang, SHEN Chang-qing, HE Qing-bo, et al. Wayside acoustic fault diagnosis for locomotive bearings based on Doppler effect correction and EEMD method in time domain[J]. Journal of Vibration and Shock, 2013, 32 (24): 104-109.
[12]张翱, 胡飞, 沈长青, 等. 基于能量重心法的列车轴承多普勒畸变故障声信号校正诊断研究[J]. 振动与冲击, 2014, 33 (5): 1-7.
ZHANG Ao, HU Fei, SHEN Chang-qing, et al. Doppler distortion removal based on energy centrobaric method for wayside fault diagnosis of train bearing by acoustic signals[J]. Journal of Vibration and Shock, 2014, 33(5): 1-7.
[13] Zhang H, Lu S, He Q, et al. Multi-bearing defect detection with trackside acoustic signal based on a pseudo time-frequency analysis and Dopplerlet filter[J]. Mechanical Systems and Signal Processing, 2016, 70-71: 176-200.
[14]张海滨, 陆思良, 何清波, 等. 多普勒畸变声学信号的伪时频分析及其校正[J]. 振动与冲击, 2016, 35 (5): 14-20.
ZHANG Hai-bin, LU Si-liang, HE Qing-bo, et al. Fake time-frequency analysis of acoustic signals with Doppler distortion and its correction[J]. Journal of Vibration and Shock, 2016, 35 (5): 14-20.
[15] Peng Z K, Zhang W M, Lang Z Q, et al. Time–frequency data fusion technique with application to vibration signal analysis[J]. Mechanical Systems and Signal Processing, 2012, 29: 164-173.
[16] Morse P M,Ingard K U. Theoretical Acoustic (Section 2)[M]. New York: Princeton University Press, 1968.
 

PDF(1446 KB)

Accesses

Citation

Detail

段落导航
相关文章

/