改进EEMD方法及混沌降噪应用研究

位秀雷1, 林瑞霖2,刘树勇2,杨庆超2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 35-41.

PDF(847 KB)
PDF(847 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 35-41.
论文

改进EEMD方法及混沌降噪应用研究

  • 位秀雷1, 林瑞霖2,刘树勇2,杨庆超2
作者信息 +

De-noising Method Based on Improved EEMD for the Chaotic Signal

  • Wei Xiulei1,Lin Ruilin2,Liu Shuyong2,Yang Qingchao2
Author information +
文章历史 +

摘要

在总体平均经验模态分解(Ensemble empirical mode decomposition,EEMD)降噪过程中,对本征模态分量(Intrinsic Mode Function,IMF)的有效处理一直是影响降噪效果的关键。为此,提出一种基于改进EEMD的去噪方法。首先基于“3σ”法则和奇异值分解(Singular value decomposition,SVD)提取第一个IMF分量中有用信号细节。然后,利用连续均方误差准则对剩余IMF分量进行高低频区分,分别使用SVD和S-G算法提取高低频分量的有用信号,可以有效避免了高频部分有用信号的流失,同时剔除低频分量中的部分噪声,克服了EEMD去噪时IMFs难以有效处理的不足。为了验证本文方法的有效性,进行了数字仿真与双势阱混沌振动试验,结果表明,本文方法的降噪效果优于小波加权和EEMD去噪方法。

Abstract

In the process of on ensemble empirical mode decomposition(EEMD) noise reduction, the effective treatment of intrinsic mode function(IMF) is the key to the effect of noise reduction. Therefore, an improved EEMD de-noising method was proposed. Firstly, the signal details of the first IMF are extracted by using the “3σ” criterion and singular value decomposition(SVD). Then the remaining IMFs are divided into high frequency and low frequency components based on consecutive mean square error(CMSE). Secondly, the useful signals of high frequency components and low frequency components are extracted based on singular value decomposition(SVD) and Savitzky-Golay(SG) filtering method respectively. Thus, the useful signals loss of high frequency components is avoided while the noise signals of low frequency components are removed effectively. In order to evaluate the performance of the proposed method, the experimental rig of leaf spring based on the double potential well theory was carried out in this paper, and the experimental results showed that the proposed method both outperformed the wavelet weighted parameters method and EEMD de-noising method.

关键词

总体平均经验模态分解 / 混沌信号 / 奇异值分解 / 降噪 / S-G滤波

Key words

ensemble empirical mode decomposition / chaotic signal / singular value decomposition / demoising / Savitzky-Golay filtering

引用本文

导出引用
位秀雷1, 林瑞霖2,刘树勇2,杨庆超2. 改进EEMD方法及混沌降噪应用研究[J]. 振动与冲击, 2017, 36(17): 35-41
Wei Xiulei1,Lin Ruilin2,Liu Shuyong2,Yang Qingchao2. De-noising Method Based on Improved EEMD for the Chaotic Signal[J]. Journal of Vibration and Shock, 2017, 36(17): 35-41

参考文献

[1] 赵志宏,杨绍普,申永军. 一种改进的EMD降噪方法[J]. 振动与冲击,2009,28(12):35-37.
Zhao Zhihong,Yang Shaopu,Shen Yongjun. Improved EMD based de-noising method J]. Journal of Vibration and Shock,2009,28(12):35-37.
[2] Huang N E,Shen Z,Long S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Science,1998,454:903-995.
[3] Manuel B V,Weng B W,Barner K E. ECG signal denoising and baseline wander correction based on the empirical mode decomposition[J]. Computers in Biology and Medicine,2008,38(1):1-13.
[4] 王红军,万鹏.基于EEMD和小波包变换的早期故障敏感特征获取[J]. 北京理工大学学报,2013,33(9):945-950.
Wang Hongjun,Wan Peng.Sensitive features extraction of early fault based on EEMD and WPT[J].Transactions of Beijing Institute of Technology,2013,33(9):945-950.
[5] 甘雨,隋立芬,王冰. 经验模态分解阈值消噪方法及其在惯性导航系统数据处理中的应用[J].测绘学报,2012,41(4):504-509.
Gan Yu,Sui Lifen,Wang Bing.EMD threshold de-noising and its applications in INS data processing[J].Acta Geodaetica et Cartographica Sinica,2012,41(4):504-509.
[6] 陈忠,符和超. 基于EEMD方法的永磁同步电机电磁噪声诊断[J]. 振动与冲击,2013,32(20):124-128.
Chen Zhong,Fu Hechao. Electromagnetic noise diagnosis for a permanent magnet synchronous motor based on EEMD[J]. Journal of Vibration and Shock,2013,32(20):124-128.
[7] 柏林,刘小峰,秦树人. 小波-形态-EMD综合分析法及其应用[J]. 振动与冲击,2008,27(5):1-4.
Bo L,Liu X F,Qin S R. Hybrid wavelet-morphology-EMD analysis and its application[J]. Journal of Vibration and Shock,2008,27(5):1-4.
[8] 陈仁祥,汤宝平,马靖华. 基于EEMD的振动信号自适应降噪方法[J]. 振动与冲击,2012,31(15):82-86.
Chen R X,Tang B P,Ma J H. Adaptive de-noising method based on ensemble empirical mode decomposition for vibration signal[J]. Journal of Vibration and Shock,2012,31(15):82-86.
[9] Wu Z,Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proc. R. London A,2004,460:1597-1611.
[10] 陈隽,李想. 运用总体经验模态分解的疲劳信号降噪方法[J].振动、测试与诊断,2011,31(1):15-19.
Chen J, Li X. Application of Ensemble Empirical Mode decomposition to noise reduction of fatigue signal[J].Journal of Vibration, Measurement & Diabnosis,2011,31(1):15-19.
[11] 雷达,钟诗圣.基于奇异值分解和经验模态分解的航空发动机健康信号降噪[J].吉林大学学报(工学版),2013,43(3):764-770.
Lei Da,Zhong Shisheng. Aircraft engine health signal denoising based on singular value decomposition and empirical mode decomposition methods[J]. Journal of Jilin University (Engineering and Technology Edition),2013,43(3):764-770.
[12] 王文波,张晓东,汪祥莉. 基于主成分分析的经验模态分解消噪方法[J]. 电子学报,2013,7(41):1425-1430.
Wang Wenbo,Zhang Xiaodong,Wang Xiangli.Empirical mode decomposition de-noising method based on principal component analysis[J]. Acta Electronica Sinica,2013,7(41):1425-1430.
[13] 张文忠,周蓉,武旭红,等. 利用白噪声分解特征的EEMD阈值降噪方法[J].测绘科学技术学报,2013,30(3):255-259.
Zhang Wenbo,Zhou Rong,Wu Xuhong,et al. A threshold de-noising method based on the characteristics of white noise decomposed by EEMD[J]. Journal of Geomatics Science and Technology,2013,30(3):255-259.
[14] 位秀雷,林瑞霖,刘树勇,等.基于改进小波变换的混沌信号去噪研究[J].武汉理工大学学报(交通科学与工程版),2013,37(5):1062-1065.
WEI X L,LIN R L,LIU S Y,et al. Denoising for chaotic signal based on an improved wavelet transform method[J].Journal of Wuhan University of Technology(Transportation Science & Engineering) ,2013,37(5):1062-1065.

PDF(847 KB)

Accesses

Citation

Detail

段落导航
相关文章

/