内共振作用下轴向运动黏弹性梁横向受迫振动

黄玲璐1, 毛晓晔1, 丁虎1, 陈立群1,2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 69-73.

PDF(931 KB)
PDF(931 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 69-73.
论文

内共振作用下轴向运动黏弹性梁横向受迫振动

  • 黄玲璐1, 毛晓晔1, 丁虎1, 陈立群1,2
作者信息 +

Transverse non-linear forced vibration of axially moving viscoelastic beam with an internal resonance

  • Huang Ling-lu1,  Mao Xiao-ye1,  DING Hu1,  Chen Li-qun1,2
Author information +
文章历史 +

摘要

研究内共振与外部激励共同作用下,轴向运动粘弹性梁横向非线性振动的稳态响应。在运动梁动力学建模中采用Kelvin本构关系,并取物质时间导数。首次将直接多尺度法应用到轴向运动连续体的内共振研究。通过直接对连续体的偏微分-积分控制方程运用多尺度法,建立内共振条件下的横向非线性受迫共振的可解性条件。并通过稳定性分析,得到稳态响应解的稳定边界。另外,还考察了参数对响应的影响。最后,运用数值仿真验证了近似解析方法的正确性及有效性。

Abstract

The transverse nonlinear forced vibration of axially moving viscoelastic beams with a three-to-one internal resonance is analytically and numerically studied in this paper. The material obeys the kelvin model in which the material derivative is taken part in the viscoelastic constitution relation instead of the simple partial time derivative. For the first time, the method of multiple scales is developed to present the governing partial differential equations of motion for the continuous system. The solvability condition of nonlinear forced vibration in the transverse motion is derived under the internal resonance. The steady-state response and stable boundary are determined. The effects of the system parameters on the steady-state response are examined. The approximate analytical outcomes are qualitatively and quantitatively supported by the numerical simulations.
 

关键词

轴向运动梁 / 内共振 / 受迫振动 / 直接多尺度法

Key words

Axially moving beam / internal resonance / forced vibration / multi-scale method

引用本文

导出引用
黄玲璐1, 毛晓晔1, 丁虎1, 陈立群1,2. 内共振作用下轴向运动黏弹性梁横向受迫振动[J]. 振动与冲击, 2017, 36(17): 69-73
Huang Ling-lu1, Mao Xiao-ye1, DING Hu1, Chen Li-qun1,2. Transverse non-linear forced vibration of axially moving viscoelastic beam with an internal resonance[J]. Journal of Vibration and Shock, 2017, 36(17): 69-73

参考文献

[1] Mote Jr C D. Dynamic stability of axially moving materials[J]. Shock and Vibration Digest, 1972; 4(4): 2-11.
[2] Wickert J A. Non-linear vibration of a traveling tensioned beam[J]. International Journal of Non-Linear Mechanics, 1992, 27(3): 503-517.
[3] 丁虎, 陈立群. 轴向运动黏弹性梁横向非线性受迫振动[J]. 振动与冲击, 2009, 28(12): 128-131.[Ding H, Chen L Q. Transverse non-linear forced vibration of axially moving viscoelastic beam[J]. Journal of Vibration and Shock, 2009, 28(12): 128-131. (in Chinese).]
[4] 宫苏梅, 张伟. 平带系统非线性振动实验研究[J]. 动力学与控制学报, 2014, 12(4): 368-372.[Gong S M, Zhang W. Experimental study on nonlinear vibration of flat-belt system[J]. Journal of dynamics and Control, 2014, 12(4): 368-372. (in Chinese).]
[5] Ding H, Chen L Q. Natural frequencies of nonlinear vibration of axially moving beams[J]. Nonlinear Dynamics, 2011, 63(1-2): 125-134.
[6] 吕海炜, 李映辉, 李亮, 等. 轴向运动软夹层梁横向振动分析[J]. 振动与冲击, 2014, 33(2): 41-51.[Lu H W, Li Y H, Li L, et al. Analysis of transverse vibration of axially moving soft sandwich beam. Journal of vibration and shock, 2014, 33(2):41-51.(in Chinese).]
[7] 冯志华, 胡海岩.内共振条件下直线运动梁的稳定性[J]. 力学学报, 2002, 34(3):389-400[Feng Z H, Hu H Y. Dynamics stability of a slender beam with internal resonance under a large linear motion[J]. Acta Mechanica Sinica, 2002, 34(3): 389-400. (in Chinese).]
[8] 陈树辉, 黄建亮. 轴向运动梁非线性振动内共振研究[J].力学学报, 2005, 37(1): 57-63. [Chen S H, Huang J L. On internal resonance of nonlinear vibration of axially moving beams[J]. Acta Mechanica Sinica, 2005, 37(1): 57-63. (in Chinese).]
[9] Ghayesh M H, Kazemirad S, Amabili M. Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance[J]. Mechanism and Machine Theory, 2012, 52: 18-34.
[10] Ghayesh M H. Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance[J]. International Journal of Non-Linear Mechanics, 2011, 53: 1022-1037.
[11] Ghayesh M H, Kafiabad HA, Reid T. Sub-and super-critical nonlinear dynamics of a harmonically excited axially moving beam[J]. International Journal of Solids and Structures, 2012, 49: 227-243.
[12] Riedel C H, Tan C A. Coupled, forced response of an axially moving strip with internal resonance. International Journal of Non-Linear Mechanics, 2002, 37: 101-116.
[13] Chen S H, Huang JL, Sze KY. Multidimensional Lindstedt–Poincaré method for nonlinear vibration of axially moving beams[J]. Journal of Sound and Vibration, 2007, 306: 1-11.
[14] Huang J L, Su R K L, Li W H, Chen SH. Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances[J]. Journal of Sound and Vibration, 2011, 330: 471-485.
[15] Sze K Y, Chen S H, Huang JL. The incremental harmonic balance method for nonlinear vibration of axially moving beams[J]. Journal of sound and Vibration, 2005, 281: 611-626.

PDF(931 KB)

Accesses

Citation

Detail

段落导航
相关文章

/