二维声波方程的Crank-Nicolson无条件稳定方法研究

富志凯,石立华,黄正宇,付尚琛

振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 79-84.

PDF(883 KB)
PDF(883 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (17) : 79-84.
论文

二维声波方程的Crank-Nicolson无条件稳定方法研究

  • 富志凯,石立华 ,黄正宇,付尚琛
作者信息 +

A Crank-Nicolson Unconditionally Stable Method for Solving 2D Acoustic Wave Equation

  • Fu Zhi-Kai  Shi Li-Hua  Huang Zheng-Yu  Fu Shang-Chen
Author information +
文章历史 +

摘要

一阶速度-压力声波方程的有限差分数值模拟中,由于受到Courant-Friedrich-Levy (CFL)稳定性条件的限制,在分析精细结构问题时往往效率低下。本文将Crank-Nicolson(CN)方法引入到声波方程的有限差分模拟中,给出了声波方程的CN差分格式。通过Von Neuman 方法推导分析了CN方法的稳定性条件,证明了该方法的无条件稳定性。同时,采用非均匀网格技术进行网格剖分,进一步提高了仿真效率,减少了内存消耗。仿真实验中,建立了二维多层精细结构的声传播模型,通过与传统时域有限差分的仿真结果进行对比分析,验证了本方法的有效性。

Abstract

Considering the restriction of the Courant-Friedrich-Levy (CFL) stability condition, it is time-consuming to solve the one-order velocity-pressure acoustic wave equation by conventional finite-difference time domain (FDTD) method, especially in analyzing the fine structure problems. This paper introduces the Crank-Nicolson (CN) method to solve the acoustic wave equation. Based on Von Neuman method, the unconditional stability of the CN method of the acoustic wave equation is proved. With the proposed method, the time step will not be restricted by the CFL stability condition any more. Meanwhile, the non-uniform grid technology is used to generate the mesh grid, which further saves the CPU memory and improves the efficiency. In the simulation, a 2-dimentional multi-layers model with fine structure is established. By comparing the simulation results between the traditional FDTD method and the CN method, the effectiveness of the proposed method is proved.
 

 

关键词

声波方程 / Crank-Nicolson方法 / 无条件稳定 / 非均匀网格

Key words

  / Acoustic wave equation, Crank-Nicolson method, Unconditionally stable, Non-uniform grid

引用本文

导出引用
富志凯,石立华,黄正宇,付尚琛. 二维声波方程的Crank-Nicolson无条件稳定方法研究[J]. 振动与冲击, 2017, 36(17): 79-84
Fu Zhi-Kai Shi Li-Hua Huang Zheng-Yu Fu Shang-Chen . A Crank-Nicolson Unconditionally Stable Method for Solving 2D Acoustic Wave Equation[J]. Journal of Vibration and Shock, 2017, 36(17): 79-84

参考文献

[1]. 梁文全,杨长春,王彦飞 等. 用于声波方程数值模拟的时间-空间域有限差分系数确定新方法.地球物理学报, 2013, 56(10): 3497-3506.
Liang W Q, Yang C C, Wang Y F, et al. Acoustic wave equation modeling with new time-space domain finite difference operators. Chinese Journal of Geophysics 2013, 56(10):3497-3506
[2]. 刘少林,杨长春,王彦飞 等. 求解声波方程的辛RKN格式. 地球物理学报, 2013, 56() 4197-4205
Liu S L, Liu X F, LiuY S, et al. Symplectic RKN schemes for seismic scalar wave simulations. Chinese Jounral of Geophysics, 2013, 56(12) 4197-4205
[3]. Liu L B, Albert D G. Acoustic pulse propagation near a right-angle wall. Journal of Acoustic Society of America, 2006, 119(4):2073-2083
[4]. Cho Y S. NDT response of spectral analysis of surface wave method to multi-layer thin high-strength concrete structures. Ultrasonic, 2002, 40:227-230
[5]. Yang M, Meng C, Fu C X, et al. Subwavelength total acoustic absorption with degenerate resonators. Applied Physics Letters, 2015, 107: 1-7
[6]. Liu Y, Sen M.K A new time–space domain high-order finite-difference method for the acoustic wave equation. Journal of Computational physics, 2009, 228: 8779-8806
[7]. Liu Y, Sen M K. Time–space domain dispersion-relation-based finite-difference method with arbitrary even-order accuracy for the 2D acoustic wave equation. Journal of Computational physics, 2013, 232: 327- 345
[8]. 张红静,周辉,陈汉明 等.声波方程数值模拟中的任意广角单程波吸收边界, 石油地球物理勘探, 2013,48(4):556-582.
Zhang H J, Zhou H, Chen H M, et al. Arbitrarily wide-angle wave equation absorbing boundary condition in acoustic numerical simulation. Oil Geophysical Prospecting, 2013,48(4):556-582.
[9]. Liao W Y. On the dispersion, stability and accuracy of a compact higher-order finite difference scheme for 3D acoustic wave equation. Journal of Computational and Applied Mathematics, 2014, 270:571- 583
[10]. Tan S.R, Huang L.J A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems. Journal of Computational physics, 2014, 276: 613- 634
[11]. Chen H M, Zhou H, Zhang Q C, et al. A k-space operator-based least-squares staggered-grid finite-difference method for modeling scalar wave propagation, GEOPHYSICS, 2016, 81(2):T39-T55.
[12]. Dablain M A. The application in heterogeneous media: velocity-stress finite-difference method. Geophysics, 1986, 51(1):54-66
[13]. Cohen G, Joly P. Construction and analysis of fourth-order finite difference schemes for the acoustic wave equation in non-homogeneous media. SIAM Journal on Numerical Analysis, 1996, 33(4):1266-1302
[14]. Bayliss A, Jordan K E, LeMesurier B.J, et al. A fourth-order accurate finite-difference scheme for the computation of elastic waves. Bulletin of the Seismological Society of America, 1986, 76: 1115-1132
[15]. Peaceman D.W, Rachford H. The numerical solution of parabolic and elliptic differential equations. Journal of the Society for Industrial and Applied Mathematics. 1959, 3: 28- 41
[16]. Douglas J, Peaceman D W. Numerical solution for two-dimensional heat flow problems. American Institute of Chemical Engineers Journal, 1955, 1:505-512
[17]. Li J C, Chen Y T, Liu G Q. High-order compact ADI methods for parabolic equations. Computers and Mathematics with Applications, 2006, 52:1343-1356
[18]. Qin J G. The new alternating direction implicit difference methods for the wave equations. Journal of Computational and Applied Mathematics, 2009, 230: 213-223
[19]. Sun G, Trueman C W. Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell's equations. Electronics Letters, 2003, 39:595-597
[20]. Chung Y.S., Sarkar T.K, Jung B.H, et al.  An unconditionally stable scheme for the finite-difference time-domain method. Transactions on Microwave Theory and Techniques, 2003, 51(3): 697-704
[21]. Huang Z.Y, Shi L.H. Chen B, et al. A New Unconditionally Stable Scheme for FDTD Method Using Associated Hermite Orthogonal Functions. IEEE Transactions on Antennas and Propagation, 2014, 62(9) 4804-4809.
[22]. Bi Z, Wu K, Wu C, et al. A dispersive boundary condition for micro strip component analysis using the FD-TD method. Transactions on Microwave Theory and Techniques, 1992, 40: 774-777
[23]. 张文生. 科学计算中的偏微分方程有限差分法. 北京:高等教育出版社, 2006
Zhang W S. Finite Difference Methods for Partial Differential Equations in Science Computation. Beijing: Higher Education Press, 2006

PDF(883 KB)

548

Accesses

0

Citation

Detail

段落导航
相关文章

/