[1] Dowell E H, Voss H M. The effect of cavity on panel vibration[J]. AIAA Journal, 1963, 1: 467-477.
[2] Gladwell G M L, Zimmermann G. On energy and complementary energy formulations of acoustic and structural vibration problems[J]. J. Sound Vib., 1966, 3(3): 233-241.
[3] Craggs A. The transient response of a coupled plate acoustic system using plate and acoustic finite elements[J]. J. Sound Vib., 1971, 15: 509-528.
[4] 邱小军, 沙家正. 低频无规入射声场通过矩形板入射到闭空间的隔声量-I.理论部分[J]. 声学学报, 1995, 20(3): 174-182.
Qiu X J, Sha J Z. Transmission loss of a rectangular panel into a rectangular enclosure in a low frequency random incidence sound field-I. Theoretical part[J]. Acta Acustica, 1995, 20(3): 174-182.
[5] 邱小军, 沙家正. 低频无规入射声场通过矩形板入射到闭空间的隔声量-II.实验部分[J]. 声学学报, 1996, 21(5): 838-843.
Qiu X J, Sha J Z. Transmission loss of a rectangular panel into a rectangular enclosure in a low frequency random incidence sound field-II. Experimental part[J]. Acta Acustica, 1996, 21(5): 838-843.
[6] 罗超, 饶柱石, 赵玫. 基于格林函数法的封闭声腔的结构-声耦合分析[J]. 振动工程学报, 2004, 17(3): 296-300.
Luo C, Rao Z S, Zhao M. Analysis of structural-acoustic coupling of an enclosure using Green function method[J]. Journal of Vibrition Engineering, 2004, 17(3): 296-300.
[7] 姚昊萍, 张建润, 陈南, et al. 不同边界条件下的封闭矩形声腔的结构-声耦合分析[J]. 声学学报, 2007, 32(6): 497-502.
Yao H P, Zhang J R, Chen N, et al. Analysis of structural-acoustic coupling of elastic rectangular enclosure with arbitrary boundary conditions[J]. Acta Acustica, 2007, 32(6): 497-502.
[8] 靳国永, 杨铁军, 刘志刚, et al. 弹性板结构封闭声腔的结构-声耦合特性分析[J]. 声学学报, 2007, 32(2): 178-188.
Jin G Y, Yang T J, Liu Z G, et al. Analysis of structural-acoustic coupling of an enclosure surrounded by flexible panel[J]. Acta Acustica, 2007, 32(2): 178-188.
[9] Deraemaeker A, Babuska I, Bouillard P. Dispersion and pullution of the FEM solution for the Helmholtz equation in one, two and three dimensions[J]. Int. J Numer. Meth. Eng., 1999, 46: 471-499.
[10] Bouillard P, Ihlenburg F. Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications [J]. Comput. Methods Appl. Engrg., 1999, 176: 147-163.
[11] Liu G R, Nguyen-Thoi T, Nguyen-Xuan H, et al. A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems[J]. Computer & Structures, 2009, 87: 14-26.
[12] 何智成, 李光耀, 成艾国, et al. 基于边光滑有限元的振声耦合研究[J]. 机械工程学报, 2014, 50(4): 113-119.
He Z C, Li G Y, Cheng A G, et al. Coupled edge-based smoothing finite element method for structural acoustic problems[J]. Journal of Mechanical Engineering, 2014, 50(4): 113-119.
[13] He Z C, Liu G R, Zhang G Y, et al. Dispersion error reduction for acoustic problems using the edge-based smoothed finite element method(ES-FEM)[J]. Int. J Numer. Meth. Eng., 2011, 86(11): 1322-1338.
[14] He Z C, Liu G R, Zhong Z H, et al. An edge-based smoothed finite element method(ES-FEM) for analyzing three-dimensional acoustic problems[J]. Computer methods in applied mechanics and engineering, 2009, 199(20-33).
[15] He Z C, Liu G R, Zhong Z H, et al. Dispersion free analysis of acoustic problems using the alpha finite element method[J]. Comput. Mech., 2010, 46(6): 867-881.
[16] Zeng W, Liu G R, Li D, et al. A smoothing technique based beta finite element method (βFEM) for crystal plasticity modeling[J]. Computer & Structures, 2016, 162: 48-67.
[17] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. Int. J. Num. Meth. Eng., 1994, 37: 229-256.
[18] 张雄, 刘岩. 无网格法[M]. 北京: 清华大学出版社, 2004.
Zhang X, Liu Y. Meshless method[M]. Beijing: Tsinghua University Press, 2004.
[19] Wang H T, Zeng X Y. Calculation of sound fields in small enclosures using a meshless model[J]. Appl. Acoust., 2013, 74(3): 459-466.