基于低色散无网格仿真模型的舱室薄壁-腔体振声耦合研究

王海涛,曾向阳,杜博凯,陈克安

振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 105-111.

PDF(982 KB)
PDF(982 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 105-111.
论文

基于低色散无网格仿真模型的舱室薄壁-腔体振声耦合研究

  • 王海涛,曾向阳,杜博凯,陈克安
作者信息 +

Analysis of vibration-acoustic coupling in cabin using a low dispersion meshless method

  • Wang Hai-tao, Zeng Xiang-yang, Du Bo-kai, Chen Ke-an
Author information +
文章历史 +

摘要

对飞机舱室结构进行薄壁-腔体振声耦合特性的研究是进行舱室噪声控制和声学设计的关键问题。基于波动声学的数值仿真方法是舱室场景中振声耦合分析常用的方法,但由于受刚度矩阵失真影响,在中频段普遍存在高色散误差。针对此问题,本文以降低振声耦合系统的刚度矩阵失真为目标,发展了一种具有低色散误差的无网格仿真模型。论文首先推导了外力及声源混合激励源下的振声耦合系统;然后发展了一种基于无网格支撑域的声压梯度光滑技术,可降低耦合系统的刚度;最后将低刚度的声压梯度光滑技术与高刚度的经典无网格法进行结合,提出一种在中低频段内自适应的刚度矩阵重组技术,最终得到低色散无网格仿真模型。矩形封闭空间及实际舱段结构的算例对比均显示低色散无网格仿真模型能够使离散系统刚度更加接近连续系统的刚度,从而在较宽的中低频段内使数值解更加接近真实解。

Abstract

 Analyzing the acoustic-structural coupling in airplane cabin is an important problem in noise control and acoustic design. The wave-based methods, such as Finite Element Method and classical meshless method, are commonly used in simulations of the acoustic-structural coupling in cabins. However, these methods usually suffer the dispersion, which reduces the accuracy in mid-frequency range. For this problem, a low dispersion meshless model is developed. The model is capable of reducing the distortion of the stiffness matrix. Firstly, the model of acoustic-structural coupling under hybrid exciting source is derived. Then, a smoothing technique for sound pressure gradient is developed based on the supporting domain of meshless method. The technique can reduce the stiffness of the matrix. Lastly, the new stiffness matrix is reconstructed by combining the ones obtained using the classical meshless method and smoothing technique. The low dispersion meshless model is used to simulate the acoustic-structural couplings of a rectangular enclosure and a practical cabin structure. The results are compared with those obtained using finite element method, classical method and measurement. The comparisons demonstrated that the low dispersion meshless model has higher accuracy on simulating the system stiffness and gives closer results with real solutions in mid-frequency range.

关键词

振声耦合 / 色散误差 / 刚度矩阵 / 无网格法 / 舱室结构

引用本文

导出引用
王海涛,曾向阳,杜博凯,陈克安. 基于低色散无网格仿真模型的舱室薄壁-腔体振声耦合研究[J]. 振动与冲击, 2017, 36(18): 105-111
Wang Hai-tao, Zeng Xiang-yang, Du Bo-kai, Chen Ke-an. Analysis of vibration-acoustic coupling in cabin using a low dispersion meshless method[J]. Journal of Vibration and Shock, 2017, 36(18): 105-111

参考文献

[1] Dowell E H, Voss H M. The effect of cavity on panel vibration[J]. AIAA Journal, 1963, 1: 467-477.
[2] Gladwell G M L, Zimmermann G. On energy and complementary energy formulations of acoustic and structural vibration problems[J]. J. Sound Vib., 1966, 3(3): 233-241.
[3] Craggs A. The transient response of a coupled plate acoustic system using plate and acoustic finite elements[J]. J. Sound Vib., 1971, 15: 509-528.
[4] 邱小军, 沙家正. 低频无规入射声场通过矩形板入射到闭空间的隔声量-I.理论部分[J]. 声学学报, 1995, 20(3): 174-182.
Qiu X J, Sha J Z. Transmission loss of a rectangular panel into a rectangular enclosure in a low frequency random incidence sound field-I. Theoretical part[J]. Acta Acustica, 1995, 20(3): 174-182.
[5] 邱小军, 沙家正. 低频无规入射声场通过矩形板入射到闭空间的隔声量-II.实验部分[J]. 声学学报, 1996, 21(5): 838-843.
Qiu X J, Sha J Z. Transmission loss of a rectangular panel into a rectangular enclosure in a low frequency random incidence sound field-II. Experimental part[J]. Acta Acustica, 1996, 21(5): 838-843.
[6] 罗超, 饶柱石, 赵玫. 基于格林函数法的封闭声腔的结构-声耦合分析[J]. 振动工程学报, 2004, 17(3): 296-300.
Luo C, Rao Z S, Zhao M. Analysis of structural-acoustic coupling of an enclosure using Green function method[J]. Journal of Vibrition Engineering, 2004, 17(3): 296-300.
[7] 姚昊萍, 张建润, 陈南, et al. 不同边界条件下的封闭矩形声腔的结构-声耦合分析[J]. 声学学报, 2007, 32(6): 497-502.
Yao H P, Zhang J R, Chen N, et al. Analysis of structural-acoustic coupling of elastic rectangular enclosure with arbitrary boundary conditions[J]. Acta Acustica, 2007, 32(6): 497-502.
[8] 靳国永, 杨铁军, 刘志刚, et al. 弹性板结构封闭声腔的结构-声耦合特性分析[J]. 声学学报, 2007, 32(2): 178-188.
Jin G Y, Yang T J, Liu Z G, et al. Analysis of structural-acoustic coupling of an enclosure surrounded by flexible panel[J]. Acta Acustica, 2007, 32(2): 178-188.
[9] Deraemaeker A, Babuska I, Bouillard P. Dispersion and pullution of the FEM solution for the Helmholtz equation in one, two and three dimensions[J]. Int. J Numer. Meth. Eng., 1999, 46: 471-499.
[10] Bouillard P, Ihlenburg F. Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D applications [J]. Comput. Methods Appl. Engrg., 1999, 176: 147-163.
[11] Liu G R, Nguyen-Thoi T, Nguyen-Xuan H, et al. A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems[J]. Computer & Structures, 2009, 87: 14-26.
[12] 何智成, 李光耀, 成艾国, et al. 基于边光滑有限元的振声耦合研究[J]. 机械工程学报, 2014, 50(4): 113-119.
He Z C, Li G Y, Cheng A G, et al. Coupled edge-based smoothing finite element method for structural acoustic problems[J]. Journal of Mechanical Engineering, 2014, 50(4): 113-119.
[13] He Z C, Liu G R, Zhang G Y, et al. Dispersion error reduction for acoustic problems using the edge-based smoothed finite element method(ES-FEM)[J]. Int. J Numer. Meth. Eng., 2011, 86(11): 1322-1338.
[14] He Z C, Liu G R, Zhong Z H, et al. An edge-based smoothed finite element method(ES-FEM) for analyzing three-dimensional acoustic problems[J]. Computer methods in applied mechanics and engineering, 2009, 199(20-33).
[15] He Z C, Liu G R, Zhong Z H, et al. Dispersion free analysis of acoustic problems using the alpha finite element method[J]. Comput. Mech., 2010, 46(6): 867-881.
[16] Zeng W, Liu G R, Li D, et al. A smoothing technique based beta finite element method (βFEM) for crystal plasticity modeling[J]. Computer & Structures, 2016, 162: 48-67.
[17] Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. Int. J. Num. Meth. Eng., 1994, 37: 229-256.
[18] 张雄, 刘岩. 无网格法[M]. 北京: 清华大学出版社, 2004.
Zhang X, Liu Y. Meshless method[M]. Beijing: Tsinghua University Press, 2004.
[19] Wang H T, Zeng X Y. Calculation of sound fields in small enclosures using a meshless model[J]. Appl. Acoust., 2013, 74(3): 459-466.
 

PDF(982 KB)

Accesses

Citation

Detail

段落导航
相关文章

/