多项式拟合振型函数法求解多跨传动轴的弯曲振动响应

彭勃,朱如鹏,李苗苗,李峙岳

振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 118-124.

PDF(1152 KB)
PDF(1152 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 118-124.
论文

多项式拟合振型函数法求解多跨传动轴的弯曲振动响应

  • 彭勃,朱如鹏,李苗苗,李峙岳
作者信息 +

Bending vibration response of multi-span shaft by using polynomial fitting mode function method

  • PENG Bo,ZHU Ru-peng,LI Miao-miao,LI Zhi-yue
Author information +
文章历史 +

摘要

为求解边界条件为弹支的多跨传动轴弯曲振动响应,基于第二类拉格朗日方程,建立了瑞利连续轴动力学模型,并使用伽辽金法将偏微分方程转化为常微分方程。提出了多跨传动轴振型函数的多项式拟合方法,通过传递矩阵法计算得到了传动轴有限截面的振型值,据此用多项式分别拟合振型函数及其高阶导数。以直升机尾传动轴为算例,将拟合得到的前三阶振型函数及相应的高阶导数代入到动力学方程组中,通过振型叠加法计算得到了尾传动轴在偏心激励下的弯曲振动响应。算例结果表明,该方法具有较好的收敛性和可靠性。

Abstract

In order to solve the bending vibration response of multi-span shaft with the elastic support boundary condition, a dynamic model of the Rayleigh continuous shaft was established based on the second Lagrange equation, and the partial differential equations were transformed into the ordinary differential ones by using Galerkin's method. A polynomial fitting method for the mode shape function of multi-span shaft was proposed, the mode shape values of the finite section of the shaft were calculated by means of transfer matrix method, and the mode shape functions and their higher order derivatives were fitted by polynomial. The helicopter tail drive shaft for example, fitting functions of three order mode shapes and their higher-order derivatives were substituted into dynamic equations, and the bending vibration response of the tail drive shaft under eccentric excitation was calculated by mode superposition method. The study results revealed that the method has good convergence and reliability.
 

关键词

多跨传动轴 / 弹性支承 / 弯曲振动 / 振型 / 多项式拟合

Key words

multi-span shaft / elastic support / bending vibration / mode shape / polynomial fitting

引用本文

导出引用
彭勃,朱如鹏,李苗苗,李峙岳. 多项式拟合振型函数法求解多跨传动轴的弯曲振动响应[J]. 振动与冲击, 2017, 36(18): 118-124
PENG Bo,ZHU Ru-peng,LI Miao-miao,LI Zhi-yue. Bending vibration response of multi-span shaft by using polynomial fitting mode function method[J]. Journal of Vibration and Shock, 2017, 36(18): 118-124

参考文献

[1] 孟 光. 转子动力学研究的回顾与展望[J]. 振动工程学报, 2002, 15(1):1-9.
MENG Guang. Retrospect and prospect to the research on rotordynamics[J]. Journal of vibration engineering, 2002, 15(1):1-9.
[2] Ebrahimi M, Gholampour S, Kafshgarkolaei H J, et al. Dynamic behavior of a multispan continuous beam traversed by a moving oscillator[J]. Acta Mechanica, 2015, 226(12):1-11.
[3] Shiau T N, Huang K H, Wang F C, et al. Dynamic response of a rotating multi-span shaft with general boundary conditions subjected to a moving load[J]. Journal of Sound & Vibration, 2009, 323(3–5):1045-1060.
[4] Yesilce Y. Free and forced vibrations of an axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements[J]. Shock & Vibration, 2012, 19(4):735-752.
[5] Ariaei A, Ziaei-Rad S, Malekzadeh M. Dynamic response of a multi-span Timoshenko beam with internal and external flexible constraints subject to a moving mass[J]. Archive of Applied Mechanics, 2013, 83(9):1257-1272.
[6] Nikkhoo A. Investigating the behavior of smart thin beams with piezoelectric actuators under dynamic loads[J]. Mechanical Systems & Signal Processing, 2014, 45(2):513–530.
[7] Kong L, Yan L, Zhao Z. Numerical investigating nonlinear dynamic responses to rotating deep-hole drilling shaft with multi-span intermediate supports[J]. International Journal of Non-Linear Mechanics, 2013, 55(10):170-179.
[8] 石鲁宁, 闫维明, 何浩祥,等. 多跨体外预应力连续梁动力特性研究-模态解析解[J]. 振动与冲击, 2014, 33(16):50-55.
SHI Lu-ning, YAN Wei-ming, HE Hao-xiang, etal. Dynamic characteristics of multi-span continuous beam with external tendons-modal analytical solution[J]. Journal of vibration and shock, 2014, 33(16):50-55.
[9] 张鹏, 叶茂, 曹文斌,等. 轴向受载多跨弹性支撑连续梁的模态分析[J]. 科学技术与工程, 2014, 14(9):122-126.
ZHANG Peng, YE Mao, CAO Wen-bin, etal. Modal analysis of multi-span beam with intermediate elastic bearing under axial-loaded[J]. Science technology and engineering, 2014, 14(9):122-126.
[10] 沈火明, 肖新标. 插值振型函数法求解移动荷载作用下等截面连续梁的动态响应[J]. 振动与冲击, 2005, 24(2):27-29.
SHEN Huo-ming, XIAO Xin-biao. Vibration response of multi-span uniform beam under moving loads by using fitting beam mode function[J]. Journal of vibration and shock, 2005, 24(2):27-29.
[11] 倪德. 基于智能弹簧的减振方法及其在多支点轴系中的应用研究[D]. 南京: 南京航空航天大学, 2014.

PDF(1152 KB)

Accesses

Citation

Detail

段落导航
相关文章

/