磁浮列车-桥梁耦合自激振动机理分析与仿真验证

王连春1,李金辉1,2,周丹峰1,李杰1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 13-19.

PDF(1320 KB)
PDF(1320 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 13-19.
论文

磁浮列车-桥梁耦合自激振动机理分析与仿真验证

  • 王连春1,李金辉1,2,周丹峰1,李杰1
作者信息 +

Principle Analysis and Simulation Verification on Maglev Vehicle-Bridge Coupled Self-Excited Vibration Problem

  • WANG Lianchun1, LI Jinhui1,2 , ZHOU Danfeng1 ,LI Jie1
Author information +
文章历史 +

摘要

当磁浮列车静止悬浮在某段桥梁上时,磁浮列车的电磁铁和桥梁会同时出现大幅垂向振动,这种现象被称为磁浮列车-桥梁耦合自激振动。目前国内外对于该问题的研究不够完善,振动产生的机理认识也不够清楚;同时在工程上,车-桥梁耦合自激振动问题仍未得到很好解决。为此本文从三个不同角度来分析车-桥梁耦合自激振动的基本原理。本文首先建立了单悬浮点-弹性桥梁简化的耦合模型,并基于此最小耦合模型,从能量传递的角度阐述了自激振动的机理,并指出悬浮系统在特定频段的有源性是导致自激振动产生的根本原因。其次,将桥梁子系统作为整个耦合系统的前向通道,将悬浮子系统视为耦合系统的反馈通道,由此从耦合系统的特征多项式的角度分析了自激振动的机理。最后根据系统开环传递函数,利用稳定性判据分析了自激振动的基本原理。基于上述分析,本文得出了四个有效结论,为认识并解决自激振动问题提供了理论参考。最后在构建起整个动态模型之上,进行了相应的数字仿真分析,仿真结果验证了所得出结论的正确性。

Abstract

As the train is suspended above the guideway in static state, the electromagnets of the maglev, together with the guideway, tend to vibrate in vertical direction, and this phenomenon is called maglev vehicle-guideway coupled self-excited vibration. So far, the research of this problem has not been perfect and the principle of the self-excited vibration has not yet been well studied; and in practice, the vehicle-guideway coupled self-excited vibration problem has not been solved, either. In order to master the problems, the underlying principles of the self-excited vibration are analyzed in three aspects. First of all, a simplified interaction model containing a flexible bridge and a single levitation unit is presented. Then, based on the minimum interaction model, the principle of the self-excited vibration from the energy transmission is explored. It shows that the active property in specific frequency band of the levitation system is the root of self-excited vibration. Secondly, the bridge subsystem is regarded as the forward channel, while the levitation subsystem is viewed as the feedback channel of the coupled system, and the underlying principle of the self-excited vibration from the characteristic polynomial of the coupled system is listed. Finally, the stability criterion is used to analyze the basis of self-excited vibration according to the open-loop transfer function of the system. In summary, four conclusions are obtained, which may provide theoretical references for the understanding and settling of stationary self-excited vibration problems of maglev. At last, based on the built overall dynamic model with details, numerical simulations are carried out and the results verify the correctness of conclusions.

关键词

磁浮列车 / 自激振动 / 机理分析 / 仿真验证

引用本文

导出引用
王连春1,李金辉1,2,周丹峰1,李杰1. 磁浮列车-桥梁耦合自激振动机理分析与仿真验证[J]. 振动与冲击, 2017, 36(18): 13-19
WANG Lianchun1, LI Jinhui1,2,ZHOU Danfeng1,LI Jie1. Principle Analysis and Simulation Verification on Maglev Vehicle-Bridge Coupled Self-Excited Vibration Problem[J]. Journal of Vibration and Shock, 2017, 36(18): 13-19

参考文献

[1] Lee H W, Kim K C, Lee J. Review of Maglev Train Technologies [J]. IEEE Transactions on Magnetics, 2006, 42(7):1917-1925.
[2] Yan L G. Progress of the Maglev Transportation in China [J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2):1138-1141.
[3] Rote M D, Cai Y G. Review of dynamic stability of repulsive-force maglev suspension system [J]. IEEE Transactions on Magnetics, 2002, 38(2):1383-1390.
[4] Yan L G. Progress of high-speed maglev in China [J]. IEEE Transactions on Applied Super-conduction, 2002, 12(1): 944-947.
[5] Yan L G. Development and Application of the Maglev Transportation System [J]. IEEE Transactions on Applied Superconductivity, 2008, 18(2): 92-99.
[6] Zhou D F, Hansen C H, Li J, Chang W S. Review of coupled vibration problems in EMS maglev vehicles [J]. Journal of Acoustics and vibration, 2010, 15(1):10-23.
[7] Zhou D F, Hansen C H, Li J. Suppression of maglev vehicle-girder self-excited vibration using a virtual tuned mass damper [J]. Journal of sound and vibration, 2011, 330(5):883-901.
[8] Li J H, Li J, Zhou D F, Yu P C. Self-excited vibration problems of maglev vehicle-bridge interaction system [J].Journal of Central South University Technology, 2014, 21(11): 4184-4192.
[9] Albert T E, Oleszczuk G. On the influence of structural flexibility on feedback control system stability for EMS Maglev vehicles [J]. Journal of Dynamic Systems Measurement and Control  Transactions of the ASME. 2011,133 (5):1-6.
[10] Albert T. E, Oleszczuk G, Hanasoge A M. Stable levitation control of magnetically suspended vehicles with structural flexibility [C]. Proceedings of the 2008 American Control Conference, Washington, 2008: 4035-4040.
[11] Wang H P, Li J, Zhang K. Sup-resonant response of a non-autonomous maglev system with delayed acceleration feedback control [J]. IEEE Transactions on Magnetics, 2008, 44(10): 2338-2350.
[12] Li X L, Zhang L L, Zhang Z Z, She L H, Huang L H. Bifurcation control for maglev system with two state feedback delays [C]. Proceeding of the 2008 IEEE international conference on information and automation. 2008,244-247.
[13] Zhang Z Z, Zhang L L, Hopf bifurcation of time-delayed feedback control for maglev system with flexible guide-way [J]. Applied Mathematics and Computation. 2013, 219(11): 6106-6112.
[14] Zhang L L, Zhang Z Z, Huang L H. Double Hopf bifurcation of time-delayed feedback control for maglev system [J]. Nonlinear Dynamic. 2012, 69(3):961-967.
[15] Zhang L L, Zhang Z Z, Huang L H. Stability and Hopf bifurcation of the maglev system with delayed position and speed feedback control [J]. Nonlinear Dynamic. 2009, 57(1): 197-207.
[16] Zhang L L, Huang L H, Zhang Z Z. Hopf bifurcation of the maglev time-delay feedback system via pseudo-oscillator analysis [J]. Mathematical and computer modeling. 2010, 52(5): 667-673.
[17] Zou D S, She L H, Zhang Z Q, Zhou F M. Maglev vehicle and guide-way coupling vibration analysis [J]. Acta Electronica Sinica. 2010, 38(9):2071-2075.
[18] Li J H, Li J, Zhou D F, Cui P, Wang L C, Yu P C. The active control of maglev stationary self-excited vibration with a virtual energy harvester [J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2942-2951.
[19] Zhou D F, Li J and Hansen C H. Suppression of the stationary maglev vehicle-bridge coupled resonance using a tuned mass damper [J]. Journal of vibration and Control, 2012, 19: 191- 203.
[20] Li J H, Li J, Zhang G. A practical robust nonlinear controller for maglev levitation system [J]. Journal of Central South University Technology, 2013, 20(11): 2991-3001.
[21] Li J H, Li J, Yu P C, Wang L C. Adaptive back-stepping control for levitation system with load uncertainties and external disturbances [J]. Journal of Center South University Technology, 2014, 21(12): 4478-4488.
[22] Pan Y P, Wang J. Model predictive control of unknown nonlinear dynamical systems based on recurrent neural networks [J]. IEEE Transactions on Industrial Electronics, 2012, 59(8):3089-3101.
[23] Chen M Y, Lin T B, Hung S K, Li C. Design and experiment of a Macro-micro planar maglev positioning system [J]. IEEE Transactions on Industrial Electronics, 2012, 59(11): 4128 -4139.
[24] Uddin M N. An adaptive-filter-based torque-ripple minimization of a fuzzy-logic controller for speed control of IPM motor drives [J]. IEEE Transactions on Industrial Electronics, 2011, 47(1):350-358.
[25] 李云钢,常文森. 磁浮列车悬浮系统的串级控制[J]. 自动化学报. 1999, 25(2):247-251.
Li Y G, Chang W S. Cascade control of an EMS maglev vehicle’s levitation control system [J]. Automatica, 1999, 25(2):247-251. (in Chinese)
[26] Li J H, Li J, Zhou D F, Wang L C. The modeling and analysis for the self-excited vibration of the maglev vehicle-bridge interaction system [J]. Advanced Transportation on Mathematical Modeling and Simulation, 2015, 23(3):2540- 2549.

PDF(1320 KB)

510

Accesses

0

Citation

Detail

段落导航
相关文章

/