针对耦合反馈振动控制系统中不可避免地存在延时问题,建立了双层耦合反馈数字控制系统模型。应用信号传递框图分析了反馈控制系统中多作动器的力耦合关系,克服了传统反馈控制流图中只考虑作动器单端反馈控制力的不足。推导了系统在耦合反馈控制策略时的力传递函数及Z域表达式,研究了控制系统在不同采样时间、阻尼参数和反馈方式下的阶跃响应。结果表明在延迟时间较小时,系统的响应能够逼近对应连续系统的响应,但延迟时间过大时,对应数字控制系统的极点将越过单位圆边界,系统失去稳定性,设计合适的延迟补偿环节可以显著增加控制效果。
Abstract
The double stage coupling feedback digital vibration controlling system model is presented to analyze the dynamic characteristic of the corresponding system with time delay. The coupling relation between actuators are described through the signal transmit block diagram, and it overcomes the disadvantages of the traditional method without reaction force on foundation. The discrete domain equation of the force transmissibility under coupling feedback control strategy is derived. The step response of the system with different sampling time, damping and feedback type are calculated. Results show that the digital controlling system response approaches to the original one with small sampling time, and it is unstable with long delay time, the corresponding poles lie at the outside of the unit circle. The lead compensator is designed to improve the controlling effectively.
关键词
振动系统 /
反馈延迟 /
耦合控制 /
延迟补偿
{{custom_keyword}} /
Key words
vibration system /
feedback delay /
coupling control;delay compensation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张庆爽,丁旺才,孙闯.一类单自由度非光滑系统混沌运动的延迟反馈控制.振动与冲击[J]. 2008,27(1):155-158.
ZHANG Qing-shuang, DING Wang-cai, SUN Chuang. Delayed feedback control of chaos in a single DOF non-smooth system[J]. Journal of Vibration and Shock. 2008, 27(1):155-158
[2] 李欣业,张利娟,张华彪.陀螺系统的受迫振动及其时滞反馈控制. 振动与冲击[J].2012,31(9):63-68.
LI Xin-ye, ZHANG Li-juan, ZHANG Hua-biao. Forced vibration of a gyroscope system and its delayed feedback control[J]. Journal of Vibration and Shock. 2012,31(9):63-68.
[3] 娄军强, 魏燕定, 杨依领, 谢锋然, 赵晓伟. 智能柔性构件振动改进多模态正位置反馈控.2015, 34(10):115-120
LOU Jun-qiang, WEI Yan-ding, YANG Yi-ling, XIE Feng-ran, ZHAO Xiao-wei. Modified multi-mode positive position feedback controller for active vibration control of a smart flexible structure[J]. Journal of Vibration and Shock. 2015, 34(10):115-120
[4] Enikov, Eniko, Stepan. Microchaotic Motion of Digitally Controlled Machines[J]. Journal of Vibration & Control, 1998, 4(4):427-443.
[5] Chen X, Su C Y, Fukuda T. Adaptive Control for the Systems Preceded by Hysteresis[J]. IEEE Transactions on Automatic Control, 2008, 53(4):1019-1025.
[6] Cao Y Y, Frank P M. Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi–Sugeno fuzzy models[J]. Fuzzy Sets & Systems, 2001, 124(2):213-229.
[7] Kwakernaak H R. Linear Optimal Control Systems[M]. John Wiley & Sons, Inc., 1972.
[8] 严天宏, 段登平, 王建宇,等. 振动主动控制中传感器/作动器最优配置问题的模拟退火方法研究[J]. 振动与冲击, 2000, 19(2):1-4.
Yan T H, Duan D P, Wang J Y, et al. Collocated sensor/actuator optimal positioning and feedback design by simulated annealing method[J]. JOURNAL OF VIBRATION AND SHOCK, 2000, 19(2):1-4.
[9] 张天飞, 汪鸿振, 孙曜. 超磁致伸缩作动器用于振动主动控制中的仿真研究[J]. 振动与冲击, 2006, 25(1):61-63.
Zhang T F, Wang H Z, Sun Y. Simulation on active vibration control using magnetostrictive actuator[J]. JOURNAL OF VIBRATION AND SHOCK, 2006, 25(1):61-63.
[10] Cai G P, Huang J Z, Yang S X. An optimal control method for linear systems with time delay[J]. Computers & Structures, 2003, 81(15):1539-1546.
[11] Cai G, Huang J. Instantaneous optimal method for vibration control of linear sampled-data systems with time delay in control[J]. Journal of Sound & Vibration, 2003, 262(5):1057-1071.
[12] Basin M, Rodriguez-Gonzalez J, Martinez-Zuniga R. Optimal control for linear systems with time delay in control input[J]. Journal of the Franklin Institute, 2004, 341(3):267-278.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}