土-结构相互作用是准确模拟核电厂结构、附着系统和组件地震响应的重要因素。本文使用振动台多功能叠层剪切土箱模拟土体边界条件,对某新型核电厂房进行1:25缩尺模型地震模拟振动台实验。实验选取10组水平加速度地震动记录,按照运行安全地震动(OBE)0.15g、极限安全地震动(SSE)0.30g和超设计基准地震动(ULE)0.75g作为输入,研究不同地震动强度引起的场地土非线性反应,以及对楼层加速度响应的影响规律。该模型土-结构相互作用振动台试验表明,尽管在基岩场地上,场地仍然对结构的地震效应造成明显的放大作用,在OBE、SSE和ULE工况下,场地动力效应放大倍数分别为3.13、2.1和1.19,由于土体逐渐进入了非线性状态,这种放大作用随着输入地震动强度的增强而变小。因此,建议对基岩场地的条件进行界定,并建议在任何条件下均需要考虑土-结构相互作用的影响,特别是在对核电厂设备、管道抗震设计和地震裕度评估时,不考虑土-结构相互作用将造成评估结果偏小。
Abstract
It is important to consider the soil-structure interaction to accurately simulate the seismic responses of the structures, subsidiary systems and components of nuclear power plants. This paper presents a set of shaking table tests on a 1:25 scaled nuclear power plant structure, with the underlying soil simulated using a multi-functional laminated shear container by which the viscous-elastic boundary is well reproduced. A group of 10 ground motion records are input through the shaking table. The PGAs are scaled to the operational basis earthquake (OBE 0.15g), the safely shutdown earthquake (SSE 0.30g), and the ultimate earthquake beyond the design basis standard (ULE 0.75g). The test result indicates that the plasticization is gradually developed in the soil with the increasing input intensity. The soil nonlinearity exerts significant influence on the responses of the superstructure. The soil significantly amplifies the structural dynamic responses, although it is in a bedrock type site. The amplification factor is 3.13, 2.1, and 1.19 for the OBE, SSE, and ULE, respectively. It decreases with the input seismic intensity, because the underlying soil enters plastification. Therefore, it is suggested that the condition of bedrock site needs further evaluation, and at any type of site, the soil-structure interaction shall be considered, particularly for the seismic design and seismic margin analysis of facilities and pipes inside a nuclear power plant. Otherwise, the seismic margin will be underestimated.
关键词
土-结构相互作用 /
核电厂 /
地震模拟振动台试验 /
地震动强度 /
楼层加速度响应
{{custom_keyword}} /
Key words
soil-structure interaction /
nuclear power plant /
shaking table test /
seismic intensity /
floor response acceleration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 中华人民共和国国家技术监督局,GB50267-97, 核电厂抗震设计规范[S].北京:地震出版社, 1997.
[2] ASCE4-98. Seismic Analysis of Safety-Relate-d Nuclear Structures and Commentary[S].1999.
[3] AP1000 Design Control Document(DCD),Tier2, Revision 15.
[4] 日本电气协会.JEAG4601-1987原子力发电所耐震设计技术指针[S].
[5] RCC-G88.Design and Construction Rules for Nuclear Power Plants[S]. 1988.
[6] 李忠诚. 考虑土-结构相互作用效应的核电厂地震响应分析[D].天津:天津大学,2006.
Li Zhongcheng. Seismic Response Analysis of Nuclear Power Plants Considering Soil-Structure Interaction Effects[D].Tianjin:Tianjin University,2006. (in Chinese)
[7] 侯春林. 核电厂结构抗震分析中不同规范要求引起的差异及影响研究[D].哈尔滨:中国地震局工程力学研究所,2012.Hou Chunlin.Studies on Differences and effects of seismic analysis of nuclear power plant building based on different regulations[D].Harbin: institute of engineering mechanics ,china earthquake administration.(in Chinese)
[8] 白文婷. 核电厂抗震设计中的两个问题及厂房结构地震易损性研究[D].哈尔滨:中国地震局工程力学研究所,2013. Bai Wenting. Study on two key problems in seismic design and the fragility of factory building structures
in nuclear power plant[D]. Harbin: institute of
engineering mechanics ,China earthquake administration. (in Chinese)
[9] Tang H.T, Tang Y.K, Step J.C. Lotung Large-scale Seismic Experiment and Soil-structure Interaction Method Validation[J],Nuclear Engineering and Design 1990, 123: 397- 412.
[10] Luco J.E, Francisco C.P. Assessment of the Response of the Hualien Containment Model during Forced Vibration Tests[J], Soil Dynamics and Earthquake Engineering,
2004, 24: 1013-1035.
[11] 张敏政. 地震模拟实验中相似律应用的若干问题[J].地震工程与工程振动,1997,17(2):52-58.
Zhang Minzheng. Study on simulitude laws for shaking table tests [J]. Earthquake Engineering and Engineering Vibration, 1997, 17(2): 52-58. (in Chinese)
[12] 张敏政,孟庆林,刘晓明. 建筑结构的地震模拟试验研究[J].工程抗震,2003,(4):31-35.
[13] 李振宝,李晓亮,唐贞云等. 土-结构动力相互作用的振动台试验研究综述[J].震灾防御术, 2010,5(4):439-450.
Li Zhenbao, Li Xiaoliang, Tang Zhenyun el. Review of Research on Shaking Table Test of Dynamic Soil-
Structure Interaction[J]. Technology for Earthquake Disaster Prevention, 2010,5(4):439-450. (in Chinese)
[14] 高永武,金波,侯钢领等.基于环境激励的ERA方法在网架结构振动测试中的应用研究[J].地震工程与工程振动,2013,33(4):176-182.
GAO Yongwu,JIN Bo,HOU Gangling,et al.Eigen-system realization algorithm used in the modal parameter identification of spacial trusses based on ambientexcitation [J].Earthquake Engineering and Engineering Vibration, 2013,33(4):176-182. (in Chinese)
[15] 赵德山,乔晓光,尹向勇.AP1000核电技术对不同地基条件的适宜性分析[J].电力勘察设计,2009,(4):73-75.
ZHAO Deshan, QIAO Xiaoguang, YIN Xiangyong.Feasibility Analysis of AP1000 Nucleus Technique to Different Foundation Clause[J]. Electric Power Survery and Design, 2009,(4):73-75. (in Chinese)
[16] 孙海峰,景立平,王宁伟等. 振动台多功能叠层剪切箱研制[J].岩石力学与工程报,2011,30(12):2498-2506.
SUN Haifeng,JING Liping,WANG Ningwei, et al. Development of multi-functional laminar shear container for shaking table test [J] .Chinese Journal of Rock Mechanics and Engineering, 2011,30(12):2498-2506.(in Chinese)
[17] 孙海峰,景立平,王宁伟等. 振动台试验三维叠层剪切箱研制[J].振动与冲击,2012,31(17):26-32.
SUN Hai-feng, JING Liping, MENG Xianchun. A three-dimensional laminar shear soil container for shaking
table test[J]. J. Vibration and Shock, 2012,31(17):26-32. (in Chinese.)
[18] 白晋华,赵树峰,谌登华等. 运行核电厂抗震裕度评价研究[J]. 原子能科学技,2012,46(12):1446-1450.
BAI Jinhua,ZHAO Shufeng,CHEN Denghua,el. Research on Seismic Margin Analysis of Operation Nuclear Power Plant[J]. Atomic Energy Science and Technology, 2012,46(12):1446-1450. (in Chinese)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}