基于核极限学习机的多变量非平稳脉动风速预测

郑晓芬1 钟旺2 李春祥2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 223-230.

PDF(2549 KB)
PDF(2549 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 223-230.
论文

基于核极限学习机的多变量非平稳脉动风速预测

  • 郑晓芬1   钟旺2   李春祥2
作者信息 +

Multivariate nonstationary fluctuating wind velocity prediction using kernel-based extreme learning machine

  • Zheng Xiaofen1    Zhong Wang2    Li Chunxiang2
Author information +
文章历史 +

摘要

运用快速集合经验模态分解(FEEMD)技术将非平稳下击暴流风速分解为一系列的固有模态分量。随后,建立核极限学习机(KELM)非平稳风速预测模型(FEEMD-KELM),分别对分解后的非平稳脉动风速训练集和测试集实施预测。为比较,同时考虑了FEEMD-ELM的预测结果。通过比较这两种预测算法的结果,在非平稳下击暴流风速预测的稳定性和精度方面,发现FEEMD-KELM优于FEEMD-ELM。

Abstract

By resorting to Fast Ensemble Empirical Mode Decomposition (FEEMD), the nonstationary downburst wind velocity sample can be decomposed into a series of intrinsic mode functions (IMFs). Subsequently, the hybridizing FEEMD and kernel-based extreme learning machine, referred to as the FEEMD-KELM, are proposed, so as to forecast training set and testing set partitioned to IMFs. For the purpose of comparison, the results of hybridizing FEEMD and extreme learning machine (FEEMD-ELM) are also taken into consideration. Comparing the results of these two predicting algorithms shows that the FEEMD-KELM renders more stable and higher accuracy than the FEEMD-ELM.
 

关键词

预测 / 极限学习机 / 核极限学习机 / 非平稳性 / 下击暴流 / 脉动风速 / 快速集合经验模态分解

Key words

Prediction / Extreme Learning Machines / Kernel-based Extreme Learning Machine Nonstationarity / Downburst / Fluctuating wind velocity / Fast Ensemble Empirical Mode Decomposition

引用本文

导出引用
郑晓芬1 钟旺2 李春祥2. 基于核极限学习机的多变量非平稳脉动风速预测[J]. 振动与冲击, 2017, 36(18): 223-230
Zheng Xiaofen1 Zhong Wang2 Li Chunxiang2. Multivariate nonstationary fluctuating wind velocity prediction using kernel-based extreme learning machine[J]. Journal of Vibration and Shock, 2017, 36(18): 223-230

参考文献

[1] Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new learning scheme of feedforward neural networks [C]. Proceedings of International joint conference on neural networks (IJCNN2004), 2004, 2: 985-990.
[2] Wang D, Huang GB. Protein sequence classification using extreme learning machine [C]. Proceedings of international joint conference on neural networks, 2005, 3: 1406-1411.
[3] 钟旺, 李春祥. 基于极限学习机的非平稳下击暴流风速预测. 上海大学学报,已录用,2016.
Zhong Wang, Li Chunxiang. Predicting nonstationary downburst wind velocity based on extreme learning machines. Journal of Shanghai University, to be published.
[4] Huang NE, Shen Z, Long SR. The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc. Roy. Soc., 1998, 454(17): 903-905.
[5] Wu Z, Huang NE. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[6] Wang YH, Yeh CH. On the computational complexity of the empirical mode decomposition algorithm [J]. Physica A, 2014, 1: 159-167.
[7] Huang GB, Zhu QY, Siew CK. Extreme learning machine: theory and application [J]. Neurocomputing, 2006, 70(1-3): 489-501.
[8] Fu H, Vong C-M, Wong P-K, Yang Z. Fast detection of impact location using kernel extreme learning machine. Neural Computing & Applications,2014: 1-10.
[9] 李锦华, 吴春鹏, 陈水生. 下击暴流非平稳脉动风速数值模拟 [J]. 振动与冲击, 2014, 33(14): 54-60.
Li JH, Wu CP, Chen SS. Simulation of non-stationary fluctuating wind velocity in downburst [J]. Journal of Vibration and Shock, 2014, 33(14): 54-60.
[10] Li JH, Li CX, He L, Shen JH. Extended modulating functions for simulation of wind velocities with weak and strong nonstationarity [J]. Renewable Energy, 2015, 5: 384-397.
[11] 李春祥, 迟恩楠, 何亮, 李正农. 基于时变ARMA和EMD-PSO-LSSVM算法的非平稳下击暴流风速预测 [J]. 振动与冲击, 2016, 35(17): 33-38.
Li Chunxiang,Chi Ennan,He Liang,Li Zhengnong. Prediction of nonstationary downburst wind velocity based on time-varying ARMA and EMD- PSO-LSSVM algorithms [J]. Journal of Vibration and Shock, , 2016, 35(17): 33-38.
[12] 李春祥, 丁晓达, 叶继红. 基于混合蚁群和粒子群优化LSSVM的脉动风速预测 [J]. 振动与冲击, 2016, 35(21): 20-.
Li Chunxiang, Ding xiaoda, Ye Jihong. Fluctuating wind velocity forecasting of hybridizing ant colony and particle swarm optimization based LSSVM. Journal of Vibration and Shock, 2016, 35(21): 20-.
[13] 迟恩楠, 李春祥. 基于优化组合核和Morlet小波核的LSSVM脉动风速预测方法 [J]. 振动与冲击, 2016, 35(18): 52-57.
Chi Ennan,Li Chunxiang. Forecasting fluctuating wind velocity using optimized combination kernel and Morlet wavelet kernel based LSSVM. Journal of Vibration and Shock, 2016, 35(18): 52-57.
[14] 张永康, 李春祥,郑晓芬. 基于混合人工蜂群和人工鱼群优化的LSSVM脉动风速预测. 振动与冲击, 2017, 36(18).
Zhang Yongkang, Li Chunxiang. Fluctuating wind velocity forecasting of hybridizing artificial bee colony and artificial fish swarm optimization based LSSVM. Journal of Vibration and Shock, 2017, 36(18).

PDF(2549 KB)

Accesses

Citation

Detail

段落导航
相关文章

/