地震作用下PTMD对JZ20-2MUQ型导管架式海洋平台的减振研究

李英娜1.2,张井财3,薛启超3,何建3,安宁3

振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 238-244.

PDF(2126 KB)
PDF(2126 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 238-244.
论文

地震作用下PTMD对JZ20-2MUQ型导管架式海洋平台的减振研究

  • 李英娜1.2,张井财3,薛启超3,何建3,安宁3
作者信息 +

Research on PTMD’s Vibration Reduction Effect On JZ20-2MUQ Offshore Jacket Platform

  •  LI Yingna1.2   ZHANG Jingcai3  XUE Qichao3  HE Jian2  AN Ning3
Author information +
文章历史 +

摘要

研究了地震作用下粘弹性碰撞调谐阻尼器(PTMD)对JZ20-2MUQ型海洋平台结构的振动控制问题,并与传统的TMD做了对比。附加阻尼和间隙比是PTMD对JZ20-2MUQ型海洋平台结构减震是否有效的两个关键参数。设置合适的附加阻尼和间隙比的PTMD,能充分发挥高频激励下的碰撞减振优势,并且避免低频激励下对结构产生的“负作用”。无论从位移还是加速度的角度,PTMD都大幅减轻了海洋平台结构的响应,且效果要优于TMD。PTMD对海洋平台控制的鲁棒性很好,同等控制要求下PTMD的其有效频率带宽是TMD的2倍左右。PTMD的质量块位移被有效限制,最优PTMD质量块的位移比TMD极值下降了75.3%,而安装空间只有TMD的13.7%左右,可以满足JZ20-2MUQ型海洋平台结构的安装需求。

Abstract

This paper focus on the vibration reduction effect and the parameter optimization for viscoelastic pounding tuned massed damper(PTMD) on offshore jacket platform. Damping ratio and gap ratio are key parameters of PTMD. Optimized PTMD can sharply suppress the offshore jacket platform vibration in both displacement and acceleration. In addition, it's more efficient than TMD. A mass of simulations testify the project structure of control to be reasonable and effective, besides strong robustness. PTMD’s effective frequency range is twice as much TMD’s, it indicates PTMD has better control performance. The space requirement of mass be conditioned to 13.7% of TMD and displacement decreased in 75.3%, it can address the platform space requirements.

关键词

海洋平台 / 地震作用 / 粘弹性 / 碰撞 / PTMD / 减振率 / 有效频率带宽

Key words

offshore platform / earthquake / viscoelastic / pounding / PTMD / reduction ration / effective frequency range;

引用本文

导出引用
李英娜1.2,张井财3,薛启超3,何建3,安宁3. 地震作用下PTMD对JZ20-2MUQ型导管架式海洋平台的减振研究[J]. 振动与冲击, 2017, 36(18): 238-244
LI Yingna1.2 ZHANG Jingcai3 XUE Qichao3 HE Jian2 AN Ning3. Research on PTMD’s Vibration Reduction Effect On JZ20-2MUQ Offshore Jacket Platform[J]. Journal of Vibration and Shock, 2017, 36(18): 238-244

参考文献

[1]. Housner G W, Bergman L A, Caughey TK, etal. Structural control: past, present, and future[J]. Journal of Engineering Mechanics, 1997, 123 (9): 897-971.
[2]. Yan A Z, Chen Y J and Teng J. Optimization of impact parameter of TMD based on hertz model. Eng. Mech., 2010, 27(2): 189-208.
[3]. Li K a, Darby A P . Experiments on the effect of an impact damper on a multiple degree of  freedom system[J]. Journal of Vibration and Control, 2006, 12(12): 445-640.
[4]. Marano G C, Greco R . Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation[J]. Journal of Vibration and Control, 2011, 17(2): 679-88
[5]. Carruth A L , Cerkovnik M E. Jumper VIV-new issues for new Frontiers 17th Int. Conf. on Offshore and Polar Engineering , 2007: 796-801.
[6]. Afsharfard A, Farshidianfar A. Free vibration analysis of nonlinear resilient impact dampers[J]. Nonlinear Dynamic, 2013,73(2): 155-66
[7]. Bisegna P , Caruso G . Closed-form formulas for the optimal pole-based design of tuned mass dampers[J]. Journal Sound Vibration, 2012, 331(3): 2291-2314.
[8]. Jedari Salami S, Sadighi M, Shakeri M, et al. An Investigation on Low Velocity Impact Response of Multilayer Sandwich Composite Structures[J]. The Scientific World Journal, 2013, 5(3): 137-145.
[9]. Ghalami-Choobar M, Sadighi M. Investigation of high velocity impact of cylindrical projectile on sandwich panels with fiber–metal laminates skins and polyurethane core[J]. Aerospace Science and Technology, 2014, 32(1): 142-152.
[10]. A.G. Mamalis, Spentzas, Manolakos. Experimental investigation of the collapse modes and the main crushing characteristics of composite sandwich panels subjected to flexural loading[J]. International Journal of Crash worthiness, 2008,13(3): 349–362.
[11]. Zhang P, Song G, Li H, etal. Seismic control of power transmission tower using pounding TMD[J]. Journal of Engineering Mechanics, 2013,10(2):1395-1406.
[12]. Hongnan Li, Peng Zhang, Gangbing Song, et al. Rbustness study of the pounding tuned mass damper for vibration control of subsea jumpers[J]. Smart Materials and Structures, 2015, 13(9): 1935-1406.
[13]. Li L, Song G, Singla M, et al. Vibration control of a traffic signal pole using a pounding tuned mass damper with viscoelastic materials[J]. Journal of Vibration and Control, 2015, 21(1): 670-675.
[14]. Bordalo S N, Morooka C K, Tochetto L G, et al. Experimental assessment of the behaviour of a pipe vibration damper underwater[C]. // Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE, San Francisco, California, 2014:145-153.
[15]. 欧进萍, 龙旭,肖仪清,吴斌.导管架式海洋平台结构阻尼隔振体系及其减振效果分析[J].地震工程与工程振 动,2002,6(1):115-122.
OU Jin-ping, LONG Xu , XIAO Yi-qing, et al. Damping isolation system and its vibration-suppressed effectiveness  analysis for offshore platform jacket structures[J]. Earthquake Engineering and Engineering Vibration, 2002, 6(1):115-122.
[16]. Janin O, Lamarque C H. Comparison of several numerical methods for mechanical systems with impacts[J]. International Journal for Numerical Methods in Engineering, 2001,51(1): 1101-1132.
[17]. 约翰逊, KˉL 著, 徐秉业 译.接触力学[M].北京,高等教育出版社,1992.
[18]. 路纯红,白鸿柏. 粘弹性材料本构模型的研究[J]. 高分子材料科学与工程,2007,06:28-31+35.
Lu Chun-hong, Bai Hong-bai. Study on constitutive model of viscoelastic material[J]. Polymeric Materials Science and Engineering, 2007,06:28-31+35.
[19]. 薛启超.聚氨酯弹性体钢夹层板的力学性能研究[D]. 哈尔滨,哈尔滨工程大学, 2013.
[20]. Ioi, Toshihoro, Iked. On the houde damper for a damped vibration system[J]. Bulletin of the JSME, 1980, 23(1): 273-279.

PDF(2126 KB)

345

Accesses

0

Citation

Detail

段落导航
相关文章

/