基于变分模态分解和SVM的滚动轴承故障诊断

王新,闫文源

振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 252-256.

PDF(992 KB)
PDF(992 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 252-256.
论文

基于变分模态分解和SVM的滚动轴承故障诊断

  • 王新,闫文源
作者信息 +

Fault diagnosis of roller bearings based on variational mode decomposition and SVM

  • WANG Xin,YAN Wen-yuan
Author information +
文章历史 +

摘要

针对滚动轴承振动信号的非平稳特征和现实中难以获得大量故障样本的实际情况,提出了基于变分模态分解(Variational mode decomposition,VMD)与支持向量机(Support vector machine,SVM)相结合的滚动轴承故障诊断方法。该方法融合了变分模态分解和支持向量机的优势,通过变分模态分解将滚动轴承振动信号分解成若干个本征模态函数分量,轴承发生不同故障时,不同本征模态函数内的频带能量会发生变化,从包含有主要故障信息的模态分量中提取能量特征作为SVM的输入,判断轴承的工作状态和故障类型。实验结果表明,该方法在少量样本情况下仍能有效地对轴承的工作状态和故障类型进行分类。

Abstract

Aiming at the non-stationary features of vibration signals of the roller bearing and the difficulty to obtain a large number of fault samples in practice, a fault diagnosis method based on the variational mode decomposition and the support vector machine (SVM) was put forward. This method combines the advantages of the variational mode decomposition and the SVM. Original bearing acceleration vibration signals are decomposed into a finite number of intrinsic mode functions. The frequency band energy of different intrinsic mode functions changes when the fault occurs. To identify the fault pattern and the condition, the frequency band energy features extracted from a number of intrinsic mode functions containing the most dominant fault information can serve as input vectors of the SVM. Practical examples show that the proposed method can classify the working condition of the bearing accurately and effectively even in the case of smaller number of samples.

 

关键词

变分模态分解 / SVM / 滚动轴承 / 故障诊断

Key words

 variational mode decomposition / support vector machine / roller bearing / fault diagnosis

引用本文

导出引用
王新,闫文源. 基于变分模态分解和SVM的滚动轴承故障诊断[J]. 振动与冲击, 2017, 36(18): 252-256
WANG Xin,YAN Wen-yuan. Fault diagnosis of roller bearings based on variational mode decomposition and SVM[J]. Journal of Vibration and Shock, 2017, 36(18): 252-256

参考文献

[1] 梅检民,肖云魁,贾继德,等. 基于改进阶比的变速器微弱故障特征提取[J]. 振动工程学报,2012, 25(3): 317-322.
MEI Jian-min, XIAO Yun-kui, JIA Ji-de, et al. Weak fault characteristics extraction for automobile transmission based on improved order analysis[J]. Journal of Vibration Engineering, 2012, 25(3): 317-322.
[2] 冯辅周,司爱威,饶国强,等. 基于小波相关排列熵的轴承早期故障诊断技术[J]. 机械工程学报,2012, 48(13): 73-79.
FENG Fu-zhou, SI Ai-wei, RAO Guo-qiang, et al. Early fault diagnosis technology for bearing based on wavelet correlation permutation entropy[J]. Journal of Mechanical Engineering, 2012, 48(13): 73-79.
[3] 程军圣,于德介,杨宇. 基于EMD和SVM的滚动轴承故障诊断方法[J]. 航空动力学报,2006, 21(3): 575-580.
CHENG Jun-sheng, YU De-jie, YANG Yu. Fault diagnosis of roller bearings based on EMD and SVM[J]. Journal of Aerospace Power, 2006, 21(3): 575-580.
[4] 苏文胜,王奉涛,张志新,等. EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击,2010, 29(3): 18-21.
SU Wen-sheng, WANG Feng-tao, ZHANG Zhi-xin, et al. Application of EMD denoising and spectral kurtosis in early fault diagnosis of rolling element bearings[J]. Journal of Vibration and Shock, 2010, 29(3): 18-21.
[5] 武英杰,甄成钢,刘长良. 变分模态分解在风电机组故障诊断中的应用[J]. 机械传动, 2015, 39(10): 129-132.
Wu Ying-jie, Zhen Cheng-gang, Liu Chang-liang. Application of variational mode decomposition in wind power fault diagnosis[J]. Journal of Mechanical Transmission, 2015, 39(10): 129-132.
[6] 张超,陈建军,郭讯. 基于EEMD能量熵和支持向量机的齿轮故障诊断[J]. 中南大学学报(自然科学版),2012, 43(3): 932-939.
ZHANG Chao, CHEN Jian-jun, GUO Xun. Gear fault diagnosis method based on ensemble empirical mode decomposition energy entropy and support vector machine[J]. Journal of Central South University(Science and Technology), 2012, 43(3): 932-939.
[7] 孔佑炳,郭瑜,伍星. 基于EEMD的混合陶瓷球轴承故障双冲击特征提取[J]. 振动与冲击,2016, 35(1): 17-22.
KONG You-bing, GUO Yu, WU Xing. Double-impulse feature extraction of faulty hybrid ceramic ball bearings based on EEMD[J]. Journal of Vibration and Shock, 2016, 35(1): 17-22.
[8] 唐贵基,王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报,2015, 49(5): 73-81.
TANG Gui-ji, WANG Xiao-long. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi’An JiaoTong University, 2015, 49(5): 73-81.
[9] Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE Tran on Signal Processing, 2014, 62(3): 531-544.
[10] WANG Yan-xue, Richard M, XIANG Jia-wei, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system[J]. Mechanical Systems and Signal Processing, 2015, (60): 243-251.
[11] Vapnik V. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995: 1-10.
[12] 于德介,杨宇,程军圣. 一种基于SVM和EMD的齿轮故障诊断方法[J]. 机械工程学报,2005, 41(1): 140-144.
YU De-jie, YANG Yu, CHENG Jun-sheng. Fault diagnosis approach for gears based on EMD and SVM[J]. Journal of Mechanical Engineering, 2005, 41(1): 140-144.
[13] 楼军伟,胡赤兵,赵家黎. EEMD样本熵在轴承故障SVM识别中的研究[J]. 机械传动,2014, 38(3): 41-45.
LOU Jun-wei, HU Chi-bing, HAO Jia-li. Research of EEMD sample entropy in bearing fault recognition with SVM[J]. Journal of Mechanical Transmission, 2014, 38(3): 41-45.
[14] 黎敏,阳建宏,王晓景. 基于信息熵的循环谱分析方法及其在滚动轴承故障诊断中的应用[J]. 振动工程学报,2015, 28(1): 164-173.
LI Ming, YANG Jian-hong, WANG Xiao-jing. The cyclic spectrum density method based on entropy and its application to the fault diagnosis of rolling bearings[J]. Journal of Vibration Engineering, 2015, 28(1): 164-173.

PDF(992 KB)

Accesses

Citation

Detail

段落导航
相关文章

/