基于压电作动与鲁棒控制的弯-剪耦合叶片挥舞失速颤振抑制

刘廷瑞,吴鸿才

振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 265-272.

PDF(1964 KB)
PDF(1964 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 265-272.
论文

基于压电作动与鲁棒控制的弯-剪耦合叶片挥舞失速颤振抑制

  • 刘廷瑞,吴鸿才
作者信息 +

Flap-wise Stall Flutter Suppression of Bending-shear coupling Blade Based on Piezoelectric Actuation and Robust Control

  • LIU Ting-rui, WU Hong-cai
Author information +
文章历史 +

摘要

针对风力机叶片的挥舞断裂失效,阐述压电作动与鲁棒控制下的挥舞/横向剪切(弯-剪)耦合叶片失速颤振及主动控制过程。结构模型是在复合材料基体中嵌入压电材料的薄壁单闭室叶型截面,气动力是适合于纯变桨运动的失速气动力模型。基于Galerkin方法进行解耦处理,气动力沿叶片展长计算采用片条理论。基于压电反馈作动理论和三权值混合灵敏度H∞鲁棒控制,研究基于时域响应的稳定性分析和失速颤振抑制方法。压电反馈基于结构裁剪技术,反馈为叶尖挥舞弯曲运动。三权值鲁棒控制通过第三权值在噪声衰减中,制约输出信号大小,迫使其稳定。通过大范围变化的变桨角和铺层角条件下的特征值分析及相平面分析,验证了三权值混合灵敏度H∞鲁棒控制不失一般性。

Abstract

This study is to investigate the stall flutter analysis and active control process of wind turbine blade with flap-wise bending/transverse shear coupling based on piezoelectric actuation and robust control, in order to deal with the flap-wise fracture failure of the blade. The structure is modeled as thin-walled single-cell composite section with piezoelectric patch embedded. Aerodynamic expressions are based on stall aerodynamic model suitable for pure pitch motion. Decoupling process is based on Galerkin method, with the aerodynamic calculation along spanwise blade using strip method. Stability analysis and stall flutter suppression are investigated by time domain response based on active control including piezoelectric feedback actuation and 3-weight mixed-sensitivity H∞ (3WMSH) robust control. Piezoelectric feedback control is achieved through the piezoelectrically induced flap bending motion at the blade tip based on structural tailoring technology. The 3-weight robust control through the third weight in the noise attenuation can restrict the output signal, and force it to be stable. In order to verify the 3WMSH control law of universal, a further validation of 3WMSH control concerning phase plane analysis, and the cases of variable pitch angles and ply angles of large range characterized by eigenvalue analysis, are investigated.

关键词

挥舞/横向剪切耦合;失速颤振;压电作动;颤振抑制;三权值混合灵敏度H&infin / 控制

Key words

Flap-wise bending/transverse shear coupling / stall flutter / piezoelectric actuation / flutter suppression / 3-weight mixed-sensitivity H&infin / control

引用本文

导出引用
刘廷瑞,吴鸿才. 基于压电作动与鲁棒控制的弯-剪耦合叶片挥舞失速颤振抑制[J]. 振动与冲击, 2017, 36(18): 265-272
LIU Ting-rui, WU Hong-cai. Flap-wise Stall Flutter Suppression of Bending-shear coupling Blade Based on Piezoelectric Actuation and Robust Control[J]. Journal of Vibration and Shock, 2017, 36(18): 265-272

参考文献

[1]  Khazar H, Alvaro G Martinez L, and Carlos D M, et al.. Flutter performance of bend–twist coupled large-scale wind turbine blades[J]. Journal of Sound and Vibration, 2016,370: 149-162.
[2] 中国网络电视台. 广东汕尾: 瞬时风速超过每秒60米, 风力发电机拦腰截断[EB/OL]. http://cen.ce.cn/more/ 201309/24/t20130924_1543628.shtml. 2013.9.24.
China Network TV station, Guangdong Shanwei: the instantaneous wind speed over 60 meters per second, wind power gener-ators were cut in half[EB/OL], http://cen.ce.cn /more/201309/24/t201309241543628. shtml,2013.
[3] Manudha T H, Aaron K L, Prusty B G. Design of shape-adaptive wind turbine blades using differential stiffness bend-twist coupling[J]. Ocean Engineering,2015, 95: 157-165.
[4] 任勇生,刘廷瑞. 具有结构阻尼的复合材料薄壁梁的动力失速非线性颤振特性[J]. 振动与冲击,2013,32(18):146-152.
REN Yong-sheng, LIU Ting-rui. Stall nonlinear flutter behavior of a thin-walled composite beam with structural damping[J]. Journal of Vibration and Shock, 2013,32(18): 146-152.
[5]  Khazar H,Sung k H. Load mitigation of wind turbine blade by aeroelastic tailoring via unbalanced laminates composites[J]. 2015,128:122-133.
[6]  Adrian L Q, Anton W H, Harald E B. A high-rate shape memory alloy actuator for aerodynamic load control on wind turbines[J].2013, 24(15):1834-1845.
[7]  Barlas T K, Wingerden J W, Hulskamp A W, et al.. Smart dynamic rotor control using active flaps on a small scale wind turbine: aeroelastic modeling and comparison with wind tunnel measurements[J].Wind Energy, 2013, 16(8):1287-1301.
[8]  郝礼书,乔志德,宋科,等. Microtab对风力机叶片翼型气动特性的影响研究[J]. 航空计算技术,2010,40:24-27.
HAO Li-shu, QIAO Zhi-de, and SONG Ke, et al.. Research on aerodynamic performance of wind turbine blade airfoil using microtab[J]. Aeronautical Computing Technique, 2010,40: 24-27.
[9]  许坤.微型小插片流动控制技术在风力机叶片中的应用研究[D]. 上海:上海交通大学,2011.
XU Kun. Application investigations of deploying flow control microtabs on a wind turbine airfoil[D]. Shanghai: Shanghai Jiao Tong University,2011.
[10] LIU Ting-rui. Aeroservoelastic pitch control of stall- induced Flap/Lag flutter of wind turbine blade section[J]. Shock and Vibration, 2015, Article ID 692567, 20 pages.
[11] Ohseop S. Modeling and Response Analysis of Thin-walled Beam Structures   Constructed of Advanced Composite Materials[D]. Viginia Polytechnic Institute and State University, 1990.
[12] LIU Ting-rui. Classical flutter and active control of wind turbine blade based on piezoelectric actuation[J]. Shock and Vibration, 2015, Article ID 292368, 13 pages.
[13] Park J –S, Kim J –H. Design and aeroelastic analysis of active twist rotor blades incorporating single crystal macro fiber composite actuators[J]. Composites Part B, 2008,39 : 1011- 1125.
[14] 乔印虎,韩江,刘春辉,等.智能夹层风力机叶片振动主动控制研究[J]. 太阳能学报,2012,33(2):185-189.
QIAO Yin-hu, HAN Jiang, and LIU Chun-hui, et al. Active vibration control of wind turbine blade with intelligent sandwich structure[J]. Acta Energiae Solaris Sinica, 2012,33(2): 185-189.
[15] 王旭东,陈进,Wenzhong S,等.风力机叶片翼型型线集成设计理论研究[J]. 中国机械工程,2009,20(2):211-213.
WANG Xu-dong, CHEN Jin, and Wenzhong S, et al.. Integration study on airfoil profile for wind turbines[J]. China Mechanical Engineering, 20(2): 211-213.
[16] Sungsoo N. Control of dynamic response of thin-walled composite beams using structural tailoring and piezoelectric actuation[D]. Ph.D. thesis, Virginia Polytechnic Institute and State University, 1997.
[17] Librescu L, Sungsoo N. Active vibration control of doubly tapered thin-walled beams using piezoelectric actuation[J]. Thin-Walled Structures, 2001,39: 65-82.
[18] Choi S C, Park J S, and Kim J H. Active damping of rotating composite thin-walled beams using MFC actuators and PVDF sensors[J]. Composite Structure, 2006, 76: 362-374.
[19]Skogestad S, Postlethwaite I. Multivariable Feedback Control: Analysis and Design[M], 2nd Edition. Chichester: Wiley,2005, 375-385.
[20] 薛定宇. 控制系统计算机辅助设计[M],第二版. 北京:清华大学出版社,2006.
XUE Ding-yu. Computer aided control systems design using MATLAB language[M], 2nd Edition. Beijing: Tsinghua University Publishing Company, 2006.
[21] 薛定宇,陈阳泉. 基于MATLAB/Simulink的系统仿真技术与应用[M],第二版. 北京:清华大学出版社,2011.
XUE Ding-yu, Chen Yang-quan, System simulation technology and application based on MATLAB/Simulink, Tsinghua University Publishing Company, Beijing, China, 2nd edition, 2011.
[22] Carlo L B, Alessandro C, and Barbara S, et al.. Aero-servo-elastic modeling and control of wind turbines using finite-element multibody procedures[J]. Multibody Systems Dynamics, 2006,16: 291-308.
[23] Kim T, Dugundji J. Nonlinear large amplitude aeroelastic behavior of composite rotor blades[J]. AIAA journal, 1993, 31(8): 1489-1497.
[24] LIU Ting-rui, XU Wei. Flap/Lag stall flutter control of large-scale wind turbine blade based on robust H2 controller [J]. Shock and Vibration, 2016, Article ID 8378161, 14 pages.
[25] 于子晴. 压电复合材料悬臂叶片自由振动数值模拟[D]. 青岛:山东科技大学,2016.
YU Zi-qing, Numerical simulation of free vibration of piezoelectric composite cantilever blade[D]. Qingdao: Shandong University of Science & Technology, 2016.

PDF(1964 KB)

Accesses

Citation

Detail

段落导航
相关文章

/