大跨度桥梁高阶涡振幅值对比风洞试验研究

周帅1,陈政清2,华旭刚2,牛华伟2

振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 29-35.

PDF(2138 KB)
PDF(2138 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 29-35.
论文

大跨度桥梁高阶涡振幅值对比风洞试验研究

  • 周帅1,陈政清2,华旭刚2,牛华伟2
作者信息 +

Experimental Research on High-Mode Vortex-Induced Vibration (VIV) Amplitude for Large Span Bridges

  • Zhou Shuai1; Chen Zhengqing2; Xugang Hua2; Niu Huawei2
Author information +
文章历史 +

摘要

为研究三维(3D)柔性桥梁及其二维(2D)刚性节段模型的高阶涡振幅值换算系数,采用一3D多点弹性支撑气弹模型开展风洞试验实测高阶涡振响应,并基于该气弹模型的模态参数按照1:1的原则设计制作2D刚性节段模型开展对比风洞试验研究。气弹模型与节段模型之间的几何缩尺比为1,两者具有相同的截面尺寸、等效质量、固有频率以及阻尼比。风洞试验实测到了气弹模型和节段模型对应不同模态阶次的高阶涡振锁定现象,试验结果表明:对于同阶模态,气弹模型和节段模型的起振风速、振动卓越频率以及区间跨度吻合良好,在高阶涡振幅值换算关系上,气弹模型约为节段模型的1.3倍。

Abstract

In order to investigate the conversion factor of high-order vortex-induced vibration (VIV) between 3D flexible bridges and 2D rigid sectional models, a set of wind tunnel tests based on 3D elastically multi-supported aeroelastic model are performed, and its high-order VIV responses are recorded; then after, the comparative wind tunnel tests with the sectional models of the same geometric scale and configuration as the aeroelastic model are conducted. The geometrical scale factor between aeroelastic model and sectional model equal to 1, which means these two models have the exactly same cross section dimensions, equivalent mass, natural frequencies and damping. The VIV lock-in phenomena of the aeroelastic and sectional models are observed in wind tunnel tests. The onset velocities, dominant vibration frequencies and lock-in range of these two models are in good accordance with each other. Results from the comparative tests show that the maximum high-order VIV amplitudes of flexible aeroelastic model are roughly 30% higher than those of the 1:1 sectional model.   
 

关键词

  / 柔性桥梁;高阶涡振;风洞试验;涡振幅值;3D效应

Key words

Flexible bridges / High-mode vortex-induced vibration / Wind tunnel tests / Vortex-induced vibration amplitude / 3D Effects

引用本文

导出引用
周帅1,陈政清2,华旭刚2,牛华伟2. 大跨度桥梁高阶涡振幅值对比风洞试验研究[J]. 振动与冲击, 2017, 36(18): 29-35
Zhou Shuai1; Chen Zhengqing2; Xugang Hua2; Niu Huawei2. Experimental Research on High-Mode Vortex-Induced Vibration (VIV) Amplitude for Large Span Bridges[J]. Journal of Vibration and Shock, 2017, 36(18): 29-35

参考文献

[1] Li Hui, Laima S J, Ou Jinping, et al. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements [J]. Engineering Structures, 2011, 33: 1894- 1907
[2] Ge Y J, Xiang H F. Recent development of bridge aerodynamics in China [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96:736-768
[3] 陈政清. 工程结构的风致振动、稳定与控制[M].北京:科学出版社,2013:274-275
(Chen Zhengqing. The wind induced vibration, stability and control of engineering structures[M]. Beijing: Science Press, 2014:274-275.)
[4] 许福友,丁威,姜峰等. 大跨度桥梁涡激振动研究进展与展望[J].振动与冲击,2010, 29(10): 40-46.
(Xu Fuyou, Ding Wei, Jiang Wei et al. Research Development and Forward of Vortex Induced Vibration on Large Span Bridges [J]. Journal of Vibration and Shock,2010, 29(10): 40-46.)
[5] 张志田,陈政清. 桥梁节段与实桥涡激共振幅值的换算关系[J].土木工程学报,2011, 44(7): 77-82
(Zhang Zhitian, Chen Zhengqing. Vibration amplitude relationship between practical bridge and section model[J]. Journal of Civil Engineering,2011, 44(7): 77-82.)
[6] 朱乐东. 桥梁涡激共振试验节段模型质量系统模拟与振幅修正方法[J].工程力学,2005,10(5):204- 208.
(Zhu Ledong. Equivalent Mass System Simulation and Vibration Amplitude Modification Method of Section Model on Bridge Vortex Induced Vibration[J]. Engineering Mechanics, 2005,10(5):204- 208.) 
[7] 周帅,陈政清,牛华伟. 矩形细杆涡振幅值和驰振性能的对比风洞试验研究[J].中国公路学报,2012, 29(1):176-186
(Zhou Shuai, Chen Zheng-qing, Niu Huawei Comparative Experimental Research on Vortex-Induced Vibration Amplitude and Galloping Instability of Slender Rectangular Cylinder [J]. China Journal of Highway and Transport, 2014, 27(1): 64 – 75.)
[8] 梁枢果, 顾明. 三角形截面高柔结构横风向振动的风洞试验研究[J].空气动力学报, 2000,18(2):172-179
(Liang shuguo, Gu ming. Experimental investigation of cross wind vibration for triangle shape tall structures[J]. Journal of air dynamics, 2000,18(2):172-179. (In Chinese))
[9] 徐枫,欧进萍.方柱非定常绕流与涡激振动的数值模拟.东南大学学报,2005, 35 (1):35-39
(Xufeng, Ou jinping. Numerical simulation of unsteady flow and vortex induced vibration for square cylinders[J]. Journal of air dynamics, 2000,18(2): 172-179.)
[10] 鲜 荣, 廖海黎, 李明水.大跨主梁沿跨向涡振Scanlan非线性模型应用[J].振动与冲击,2009, 28(4):54-58.
(Xian Rong, Liao Hai-li, Li Ming-shui.The Application of Scanlan Nonlinear Model on Spanwise Vortex Induced Vibration of Large Span Bridges[J].Journal of Vibration and Shock, 2009, 28(4):54-58.)
[11] Ruscheweyh H. Practical experience with wind inducced vibrations [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 33: 211-218
[12] 陈文. 多点弹性支承连续梁多模态涡激振动特性研究: [D].长沙: 湖南大学,2013:59-77
(Chen wen. The investigation of multi-mode vortex-induced vibration for multiple elastically supported consecutive beams [D].Hunan University, 2013:59-77.)
[13] Matsumoto M. Vortex shedding of bluff bodies: a review[J]. Journal of Fluids and Structures,1999, 13:791-811
[14] Garrett  J L. Flow-induced vibration of elastically supported rectangular cylinders: [D]. America:Iowa State University,2003:1-183
[15] 周帅. 柔性桥梁涡振幅值与软驰振曲线预测方法研究: [D].长沙: 湖南大学,2013:1-180
(Zhou Shuai. Prediction methods on vortex-induced vibration amplitudes and soft galloping responses of flexible bridges [D].Hunan University, 2013:1-180.)
[16] Hua X.G., Chen Z.Q., Chen W, and Huang Z.W. 2013. Higher modes’ vertical vortex-induced vibrations of suspension bridge –Part 2: Aeroelastic Model Study, The six European-Africa Conference on Wind Engineering, Cambridge, UK.

PDF(2138 KB)

Accesses

Citation

Detail

段落导航
相关文章

/