浸液轴向运动板的非线性自由振动和内共振分析

张宇飞1, 王延庆2,, 闻邦椿1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 36-42.

PDF(1855 KB)
PDF(1855 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (18) : 36-42.
论文

浸液轴向运动板的非线性自由振动和内共振分析

  • 张宇飞1,  王延庆2,,  闻邦椿1
作者信息 +

ANALYSIS ON THE NONLINEAR FREE VIBRATION AND INTERNAL RESONANCE OF AXIALLY MOVING PLATES IMMERSED IN LIQUID

  • Zhang Yu-Fei 1,Wang Yan-Qing 2, Wen Bang-Chun1
Author information +
文章历史 +

摘要

以竖直浸没于液体中的轴向运动矩形板作为研究模型,根据经典薄板理论以及von Kámán非线性几何关系,得到流-固耦合系统的非线性振动微分方程。假定液体为无粘、无旋、不可压缩的理想流体,流体对板的动压力采用速度势函数及Bernoulli方程描述。然后应用直接多尺度法求解系统的非线性偏微分方程,根据可解性条件,获得系统的非线性频率。最后,分析了浸液轴向运动板的1:1内共振及1:3内共振现象,并讨论了系统参数对该流-固耦合系统非线性动力学特性的影响。

Abstract

A vertically moving rectangular plate immersed in liquid is investigated. Based on the classical thin plate theory and von Kámán nonlinear geometrical relationships, the nonlinear vibrational differential equations of the fluid-structure coupling system are derived. It is assumed that the liquid is incompressible, inviscid and irrotational. The velocity potential and Bernoulli’s equation are used to describe the fluid pressure acting on the moving plate. The system is solved by applying directly the method of multiple scales to the nonlinear partial-differential equations. Based on the solvable condition, the nonlinear frequency of the system is obtained. The 1:1 and 1:3 internal resonances of moving plate-fluid system are investigated. The effects of system parameters on the nonlinear dynamic characteristics of the fluid-structure coupling system are discussed in detail.
 

关键词

轴向运动板 / 液体 / 内共振 / 自由振动 / 响应

Key words

axially moving plate / liquid / internal resonance / free vibration / response

引用本文

导出引用
张宇飞1, 王延庆2,, 闻邦椿1. 浸液轴向运动板的非线性自由振动和内共振分析[J]. 振动与冲击, 2017, 36(18): 36-42
Zhang Yu-Fei 1,Wang Yan-Qing 2, Wen Bang-Chun1. ANALYSIS ON THE NONLINEAR FREE VIBRATION AND INTERNAL RESONANCE OF AXIALLY MOVING PLATES IMMERSED IN LIQUID[J]. Journal of Vibration and Shock, 2017, 36(18): 36-42

参考文献

[1] Riedel C H,Tan C A. Coupled, forced response of an axially moving strip with internal resonance[J]. International Journal of Non-Linear Mechanics, 2002, 37(1): 101-116.
[2] 冯志华,胡海岩. 内共振条件下直线运动梁的动力稳定性[J]. 力学学报, 2002, 34(3): 389-400. (Feng Zhihua, Hu Haiyan. Dynamic stability of a slender beam with internal resonance under a large linear motion. Chinese Journal of Theoretical and Applied Mechanics, 2002, 34 (3): 389—400(in Chinese))
[3] Wang Y Q,Liang L,Guo X H. Internal resonance of axially moving laminated circular cylindrical shells[J]. Journal of Sound and Vibration, 2013, 332(24): 6434-6450.
[4] Chen L-Q,Zu J W. Solvability condition in multi-scale analysis of gyroscopic continua[J]. Journal of Sound and Vibration, 2008, 309(1): 338-342.
[5] 张伟,温洪波,姚明辉. 黏弹性传动带1:3内共振时的周期和混沌运动[J]. 力学学报, 2004, 36(4): 443-454. ( Zhang W, Wen H B, Yao M H. Periodic and chaotic oscillation of a parametrically excited viscoelastic moving belt with 1:3 internal resonance, Chinese Journal of Theoretical and Applied Mechanics, 2004, 36 ( 4): 443-454 (in Chinese))
[6] Zhang W,Gao M,Yao M. Global analysis and chaotic dynamics of six-dimensional nonlinear system for an axially moving viscoelastic belt[J]. International Journal of Modern Physics B, 2011, 25(17): 2299-2322.
[7] Zhang W,Song C. Higher-dimensional periodic and chaotic oscillations for viscoelastic moving belt with multiple internal resonances[J]. International Journal of Bifurcation and Chaos, 2007, 17(05): 1637-1660.
[8] Ding H,Chen L-Q. Galerkin methods for natural frequencies of high-speed axially moving beams[J]. Journal of Sound and Vibration, 2010, 329(17): 3484-3494.
[9] Ding H,Chen L-Q,Yang S-P. Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load[J]. Journal of Sound and Vibration, 2012, 331(10): 2426-2442.
[10] Huang J L,Su R K L,Li W H,et al. Stability and bifurcation of an axially moving beam tuned to three-to-one internal resonances[J]. Journal of Sound and Vibration, 2011, 330(3): 471-485.
[11] Yao M,Zhang W,Zu J W. Multi-pulse chaotic dynamics in non-planar motion of parametrically excited viscoelastic moving belt[J]. Journal of Sound and Vibration, 2012, 331(11): 2624-2653.
[12] Ghayesh M H,Amabili M. Steady-state transverse response of an axially moving beam with time-dependent axial speed[J]. International Journal of Non-Linear Mechanics, 2013, 49: 40-49.
[13] Tang Y Q,Chen L Q. Stability analysis and numerical confirmation in parametric resonance of axially moving viscoelastic plates with time-dependent speed[J]. European Journal of Mechanics-A/Solids, 2013, 37: 106-121.
[14] Yang X D,Tang Y Q,Chen L Q,et al. Dynamic stability of axially accelerating Timoshenko beam: Averaging method[J]. European Journal of Mechanics-A/Solids, 2010, 29(1): 81-90.
[15] Yang X D,Zhang W. Nonlinear dynamics of axially moving beam with coupled longitudinal–transversal vibrations[J]. Nonlinear Dynamics, 2014, 78(4): 2547-2556.
[16] 张宇飞,王延庆,闻邦椿. 轴向运动层合薄壁圆柱壳内共振的数值分析[J]. 振动与冲击, 2015, 34(22): 82-86. (Zhang Yu-Fei,Wang Yan-Qing,Wen Bang-Chun. Internal resonance of axially moving laminated thin cylindrical shells, Journal of Vibration and Shock, 2015, 34(22): 82-86 (in Chinese).)
[17] Gosselin F,Païdoussis M P,Misra A K. Stability of a deploying/extruding beam in dense fluid[J]. Journal of Sound and Vibration, 2007, 299(1): 123-142.
[18] Wang L,Ni Q. Vibration and stability of an axially moving beam immersed in fluid[J]. International Journal of Solids and Structures, 2008, 45(5): 1445-1457.
[19] Wang Y Q,Xue S W,Huang X B,et al. Vibrations of Axially Moving Vertical Rectangular Plates in Contact with Fluid[J]. International Journal of Structural Stability and Dynamics, 2016, 16(02): 1450092.
[20] Wang Y Q,Du W,Huang X,et al. Study on the dynamic behavior of axially moving rectangular plates partially submersed in fluid[J]. Acta Mechanica Solida Sinica, 2015, 28(6): 706-721.
[21] Yang X D,Zhang W,Chen L Q,et al. Dynamical analysis of axially moving plate by finite difference method[J]. Nonlinear Dynamics, 2012, 67(2): 997-1006.

PDF(1855 KB)

Accesses

Citation

Detail

段落导航
相关文章

/