基于自适应筛选EMD和CFDC的变压器绕组状态检测

杨毅1,王丰华2,段若晨2,杜胜磊1,刘石1,杨贤1

振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 106-111.

PDF(1376 KB)
PDF(1376 KB)
振动与冲击 ›› 2017, Vol. 36 ›› Issue (19) : 106-111.
论文

基于自适应筛选EMD和CFDC的变压器绕组状态检测

  • 杨毅1,王丰华2,段若晨2,杜胜磊1,刘石1,杨贤1
作者信息 +

Detection of Transformer Winding Condition Based on the Self-adaptive Sifting EMD and CFDC

  • YANG Yi1,WANG Fenghua2,DUAN Ruochen2, DU Shenglei1,LIU Shi1,YANG Xian1
Author information +
文章历史 +

摘要

为更加准确地检测变压器的绕组状态,本文提出了自适应筛选EMD算法来对变压器突发短路下的非平稳和强时变振动信号进行分解,进而根据得到的Hilbert边际谱定义了中心频率分布系数(central frequency distribution coefficient,CFDC)来对变压器绕组状态进行检测。仿真分析和某大型变压器实测振动信号的计算结果表明,增加了自适应筛选因子的改进EMD算法能够有效地抑制模态混叠现象,提高了振动信号分解的准确性,所定义的CFDC及其变化可以清晰地反映出变压器绕组状态改变的演变过程,便于及时有效检测绕组状态,确保变压器的安全可靠运行。

Abstract

To detect the mechanical condition of transformer winding more accurately, the self-adaptive sifting EMD (SASEMD) is proposed to analyze the unstable and time-varying vibration signals of power transformer under sudden short-circuit. The central frequency distribution coefficient (CFDC) based on obtained Hilbert marginal spectrum is defined to detect the winding condition. According to the simulation analysis and the calculated results of the measured vibration signals of some large-scaled transformer, it is seen that the improved EMD with self-adaptive sifting factor can effectively restrain the aliasing effect and improve the accurateness of signal decomposition. The defined CFDC can clearly reflect the variation degree of winding deformation, which is helpful to effectively detection the winding condition for the secure and reliable operation of power transformer.

关键词

变压器 / 绕组状态 / 自适应筛选EMD / 中心频率分布系数 / 振动信号

Key words

 power transformer / winding condition / self-adaptive sifting EMD / central frequency distribution coefficient / vibration signal

引用本文

导出引用
杨毅1,王丰华2,段若晨2,杜胜磊1,刘石1,杨贤1. 基于自适应筛选EMD和CFDC的变压器绕组状态检测[J]. 振动与冲击, 2017, 36(19): 106-111
YANG Yi1,WANG Fenghua2,DUAN Ruochen2, DU Shenglei1,LIU Shi1,YANG Xian1. Detection of Transformer Winding Condition Based on the Self-adaptive Sifting EMD and CFDC[J]. Journal of Vibration and Shock, 2017, 36(19): 106-111

参考文献

[1] 王梦云.110kV及以上变压器事故与缺陷统计分析[J]. 供用电,2007, 24(1): 1-5.
    WANG Mengyun. Statistic analysis of transformer faults and defects at voltage 110kV and above [J]. Distribution & Utilization, 2007, 24(1): 1-5.
[2] 汲胜昌,王世山,李清泉,等. 用振动信号分析法监测变压器绕组状况 [J]. 高电压技术,2002,28(4): 12-15.
    JI Shengchang, WANG Shishan, LI Qingquan, et al. The application of vibration method in monitoring the condition of transformer winding [J]. High Voltage Engineering, 2002, 28(4): 12-15.
[3] Mariana I., Robert B., Mihai O. P., et al. Vibration monitoring for diagnosis of electrical equipment's faults [C]. Proceedings of the 12th International Conference on OPTIM, Brasov, Romania, May 20-22, 2010: 493-499.
[4] García B., Burgos J. C., Alonso Á. M.. Transformers tank vibration modelling as a method of detecting winding deformations, Part I: Theoretical foundation [J]. IEEE Transactions on Power Delivery, 2006, 21 (1): 157-163.
[5] García B., Burgos J. C., Alonso Á. M.. Transformers tank vibration modelling as a method of detecting winding deformations, Part II: Experimental verification. IEEE Transactions on Power Delivery, 2006, 21 (1): 164-169.
[6] Ibargiemgputia P. H., Linan R., Betancourt E.. Transformer diagnosis using probabilistic vibration model [C]. IEEE PES on Transmission and Distribution Conference and Exposition, New Orleans, USA, Apr. 2010: 1-8.
 [7] 马宏忠,耿志慧,陈楷,等. 基于振动的电力变压器绕组变形故障诊断新方法 [J]. 电力系统自动化,2013,37(8): 89-95.
    MA Hongzhong, GENG Zhihui, CHEN Kai et al.  A new fault diagnosis method for power transformer winding deformation based on vibration [J]. Automation of Electric Power Systems, 2013,37(8): 89-95.
[8] 颜秋容,刘欣,尹建国. 基于小波理论的电力变压器振动信号特征研究 [J]. 高电压技术,2002,28(4): 12-15.
    YAN Qiurong, LIU Xin, YIN Jianguo. Features of vibration signal of power transformer using the wavelet theory [J]. High Voltage Engineering, 2007, 33(1): 165-168.
 [9] 邵宇鹰,徐剑,饶柱石,等. 短路冲击下变压器绕组状态在线诊断[J]. 振动与冲击,2011,30(2): 173-176.
    SHAO Yuying, XU Jian, RAO Zhushi, et al.  On-line diagnosis for a transformer winding's state under short-circuit shock [J]. Journal of Vibration and Shock, 2011, 30(2): 173-176.
[10] 张坤,王丰华,廖天明,等. 应用复小波变换检测突发短路时的电力变压器绕组状态 [J]. 电工技术学报,2014, 29(8):327-332.
    ZHANG Kun, WANG Fenghua, LIAO Tianming, et al. Detection of transformer winding deformation under short-circuit impulse base on complex wavelet algorithm [J]. Transactions of China Electrotechnical Society, 2014, 29(8):327-332.
[11] 李莉,朱永利,宋亚奇. 变压器绕组多故障条件下的振动信号特征提取[J]. 电力自动化设备,2014,34(8): 140-146.
    LI Li, ZHU Yongli, SONG Yaqi. Feature extraction for vibration signal of transformer winding with multiple faults [J]. Electric Power Automation Equipment, 2014, 34(8): 140-146.
[12] 田玉芳. 变压器绕组状态的振动检测法研究[D]. 山东大学,2014
    TIAN Yufang. Research on the vibration analysis method in detecting the condition of transformer winding [D]. Shandong University, 2014.
[13] G. Rilling, P. Flandrin, P. Goncalves. On empirical mode decomposition and its algorithms [J]. IEEE Workshop on Nonlinear Signal and Image Processing, Grado (I), 2003.

PDF(1376 KB)

350

Accesses

0

Citation

Detail

段落导航
相关文章

/